Испытание бетона, растворов, ж/б конструкций

Методы проверки бетона на прочность

Проверка качества применяемого материала производится в обязательном порядке при монтаже зданий и сооружений. Для подтверждения соответствия заявленных характеристик проектным нормам, проводят испытание бетона на прочность, сопротивление на изгиб и растяжение. Данная мера позволяет подрядчику отчитаться перед заказчиком о проведении работ в соответствии с проектом, а производителю — подтвердить качество выпускаемой продукции. Своевременно выполненные испытания позволят внести изменения в ход работ и избежать ошибок.

Испытания проводят в сертифицированных лабораториях на основании ГОСТ 22690-2015, для чего специалисты используют различные способы измерения и воздействия на отобранные образцы материала. В качестве них обычно используют бетонные кубики, которые испытывают на сжатие, но существуют и другие методики исследования.

В ходе проверки получают следующие результаты:

  • Определяют соответствие качества материала проектным документам. Испытания проводят не менее трех раз за весь период строительства.
  • При отклонении характеристик, производится замена конструкций из забракованного материала, что позволяет удержать общие показатели сооружения в рамках проекта.
  • Предварительные испытания обязательны при производстве ремонтных работ в технических помещениях и подвалах.
  • Испытания конструкций из железобетона позволяет принять решение о судьбе старых зданий и сооружений.

От чего зависит и на что влияет прочность бетона

Способность бетона сопротивляться внешнему воздействию за счет внутреннего напряжения зависит от состава раствора и марки цемента. При подтверждении прочности материала, соответствующего определенной марке, на образце не должны выявляться признаки разрушения в виде сколов, трещин, расслоения структуры.

Порой строители при выполнении работ стараются сэкономить на материалах, используя более дешевый бетон низких марок, но нарушение проектных значений может привести к серьезным последствиям, поэтому такое средство экономии неприемлемо.

Помимо соотношения наполнителя и цемента, на прочность состава влияют присадки и пластификаторы, используемые для придания изделию особых свойств (кислотоустойчивость, водонепроницаемость, скорость вставания, пластичность). Для получения конструкций, способных выдерживать высокие нагрузки, в обязательном порядке производится армирование элементов металлической проволокой различного сечения.

Кроме состава раствора, на прочность бетона влияют внешние условия, при которых осуществляется заливка. При качественном удалении пузырьков воздуха из бетонной массы путем уплотнения смеси, прочность изделий заметно повышается.

Также надо учитывать, что при использовании раствора при отрицательных температурах, следует принимать меры по подогреву материала путем установки электродов в заливку и подключению к ним электричества. В такой ситуации еще применяется укрытие основания опилками.

При работе с бетоном важно поддерживать необходимую влажность для недопущения растрескивания поверхности заливки при быстром испарении влаги, что также влияет на качество материала и его прочность. Чтобы избежать этого процесса, необходимо укрывать бетон пленкой или другими подручными средствами, а также периодически увлажнять поверхность.

В итоге можно утверждать, что прочность бетона зависит от множества факторов, а поэтому контроль качества особенно важен при установке несущих конструкций, так как даже если технологические процессы соблюдаются в полной мере, всегда могут найтись факторы, которые повлияют на бетон и станут причиной проблем в будущем.

Классификация методов испытаний

Для проверки бетона применяют несколько методов:

  • Проверка образцов, отливаемых в лабораторных условиях. Данный метод предусматривает изготовление кубиков или цилиндров из испытуемой смеси с последующей проверкой прочности материала на прессе;
  • Проверка образцов, выпиленных или вырубленных из уже готовой конструкции. Получают такие образцы с помощью бурения алмазными коронками. Далее полученные керны направляют в лабораторию для определения прочностных характеристик, как и в первом случае, с применением пресса. Данный метод связан с существенными затратами по получению образца и с угрозой ослабления целостности элемента, из которого был получен керн;
  • Способ проверки бетона на прочность неразрушающим методом. В данном случае используются инструменты и приборы, с помощью которых можно изучать характеристики бетона без размещения образцов в специальных устройствах. Для данных исследований могут задействовать ультразвук, проверять качество основания с помощью ударно-импульсного метода испытания бетона и т.д.

Наиболее популярным методом, позволяющим получить самые точные показатели свойств бетона, является проверка образцов на сжатие под прессом.

Допустимые варианты контрольных проб.

Этапы проведения испытаний

Проверка бетона производится путем исследования образцов на прочность неразрушающими и разрушающими методами.

Разрушающие методы

Данный способ подразумевает проведения испытаний с помощью пресса, когда на образец, полученный в ходе лабораторной отливки или выпиленный из основания уже готовой конструкции, оказывают постепенно возрастающее давление. Оказание воздействия продолжается до фиксации разрушения образца.

Данный метод является самым точным и обязательным при производстве работ по возведению ответственных сооружений.

Неразрушающие методы

Для получения результатов при использовании неразрушающих методов контроля, используют специальные приборы и устройства. Частичное разрушение производят с помощью фиксации на бетонной поверхности специального инструмента, который позволяет исследовать бетон на отрыв, фиксируя необходимое усилие.

Также изучается реакция материала на скалывание, когда прибор устанавливается на угол бетонного основания и под нагрузкой производится разрушение материала.

Отрыв со скалыванием.

При ударных нагрузках изучают поведение бетона при осуществлении удара специальным устройством и фиксируют реакцию на упругий отскок — замеряется значение отскока металлического шарика, выпущенного с определенным усилием.

При ультразвуковом контроле качества бетона, применяется специальное устройство, которое дает возможность фиксировать прохождение волн внутри конструкции. По реакции на отражение делают вывод о качестве материала.

Как проверить прочность бетона самостоятельно? Получить полноценное исследование материала в домашних условиях невозможно. Контроль качества материала можно производить исключительно визуальными методами. Качественная смесь обычно имеет серый или серо-зеленый цвет, структура раствора должна быть однородной, с нормальной вязкостью.

Если материал имеет желтоватый оттенок, то это означает, что качество такого раствора невысокое и в его составе присутствуют примеси, снижающие прочностные характеристики. Хорошим признаком является обнаружение на поверхности раствора цементного молочка густой консистенции.

При ударных нагрузках (ударе молотком по набравшему полную прочность материалу), инструмент должен отскакивать от основания без существенных изменений на поверхности, оставляя почти невидимые вмятины.

Порядок проведения проверки на удобоукладываемость

Для определения этой характеристики, специалисты лаборатории применяют вискозиметр. Этот прибор позволяет измерить время в секундах, которое требуется для укладки материала.

Используя вискозиметр, начинают укладку, одновременно запуская отсчет времени. По окончании процесса фактическое время фиксируют. Качество бетона определяется временем, потраченным на укладку данным методом. Чем меньше времени проходит, тем выше качество материала.

Читайте также:
Большая спальня — 110 фото идей красивого дизайна

Порядок проведения испытаний на растяжение

Для производства испытаний на растяжение потребуется приготовить образец вытянутой формы типа призмы. Этот образец помещают в специальный прибор в горизонтальном положении, далее на середину образца оказывается силовое воздействие с нарастанием нагрузки. Шаг оказываемого воздействия на образец – 0,5 МПа/с.

Фиксация результата происходит после разрушения структуры бетона в центральной части образца.

Порядок проведения испытаний на сжатие

Данный способ испытания позволяет определить марку материала. Для проведения испытания отливают кубики из бетона, применяемого в строительстве, или вырезают образцы из уже отлитого изделия. Размер кубиков для испытания бетона варьируется от 100 до 300 мм по грани. Помимо кубической формы, образцы можно изготавливать в виде цилиндров или призм.

При отливке образцов в лабораторных условиях, используют вибростол, чтобы смесь получила максимальную плотность. Испытания проводятся на 3, 7 и 28 сутки после приобретения образцом прочности. Основные испытания проводят на 28 день после полного набора прочности материала.

Образец помещают под пресс, который давит на кубик с мощностью в 140 кгс/м 2 с шагом в 3,5 кгс/м 2 . Вектор силы строго перпендикулярен основанию образца. По показаниям определяется возможность сопротивления материала сжатию, и в протокол испытания записывается марка бетона.

Образец протокола испытаний.

Марки прочности бетона и сфера их применения

Для определения характеристик бетона ему присваивают маркировку согласно ГОСТ: букву М и цифру, обозначающую сопротивление материала на сжатие. Чем выше значение, тем более прочным является изделие из данного материала — прочность зависит от количества цемента в составе смеси.

По прочностным характеристикам бетон делят на марки от М100 до М500 с шагом значения 50. Еще одна характеристика — класс бетона —, определяет способность материала работать в агрессивных средах.

Бетоны марки М100, М150, М200 и М250 относят к категории легких и ячеистых. Их используют для заливки конструкций, которые не несут значительной нагрузки. Применяют при устройстве бордюров, фундаментов для малых строений, пешеходных дорожек.

Бетон М300 и М350 можно использовать для отливки плит перекрытия, устройства фундамента в многоэтажном строительстве, отливке монолитных стен.

Самые прочные бетоны марок, М400, М450 и М500, находят применение в производстве железобетонных конструкций, работающих в сложных условиях с повышенной нагрузкой (например, для возведения гидротехнических сооружений).

Коровин Сергей Дмитриевич

Магистр архитектуры, закончил Самарский Государственный Архитектурно-Строительный Университет. 11 лет опыта в сфере проектирования и строительства.

  • Как рассчитать, сколько кубов бетона нужно на фундамент?
  • Руководство по самостоятельной установке межкомнатных дверей

–>

Испытание бетона, растворов, ж/б конструкций

Дата введения 2015-07-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 “Межгосударственная система стандартизации. Основные положения” и ГОСТ 1.2-2015 “Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены”

Сведения о стандарте

1 РАЗРАБОТАН структурным подразделением ОАО “НИЦ “Строительство”, Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 “Строительство”

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2014 г. N 72-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 11 декабря 2014 г. N 1972-ст межгосударственный стандарт ГОСТ 10181-2014 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2015 г.

5 Настоящий стандарт соответствует следующим европейским региональным стандартам:

– EN 12350-1:2009* “Испытание свежеприготовленной бетонной смеси. Часть 1. Отбор образцов в части отбора образцов” (“Testing fresh concrete – Part 1: Sampling”, NEQ);

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. – Примечание изготовителя базы данных.

– EN 12350-2:2009 “Испытание свежеприготовленной бетонной смеси. Часть 2. Определение осадки конуса в части общих требований к методу определения осадки конуса” (“Testing fresh concrete – Part 2: Slump test”, NEQ);

– EN 12350-3:2009 “Испытание свежеприготовленной бетонной смеси. Часть 3. Метод Вебе в части общих требований к определению удобоукладываемости методом Вебе” (“Testing fresh concrete – Part 3: Vebe test”, NEQ);

– EN 12350-4:2009 “Испытание свежеприготовленной бетонной смеси. Часть 4. Степень уплотняемости в части метода определения степени уплотняемости” (“Testing fresh concrete – Part 4: Degree of compactability”, NEQ);

– EN 12350-5:2009 “Испытание свежеприготовленной бетонной смеси. Часть 5. Определение расплыва в части метода определения расплыва” (“Testing fresh concrete – Part 5: Flow table test”, NEQ);

– EN 12350-6:2009 “Испытание свежеприготовленной бетонной смеси. Часть 6. Плотность в части общих требований к методу определения средней плотности” (“Testing fresh concrete – Part 6: Density”, NEQ);

– EN 12350-7:2009 “Испытание свежеприготовленной бетонной смеси. Часть 7. Содержание воздуха. Методы определения под давлением в части общих требований к методу определения содержания воздуха” (“Testing fresh concrete – Part 7: Air content – Messure methods”, NEQ)

7 ПЕРЕИЗДАНИЕ. Февраль 2019 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе “Национальные стандарты”, а текст изменений и поправок – в ежемесячном информационном указателе “Национальные стандарты”. В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе “Национальные стандарты”. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт распространяется на бетонные смеси тяжелого, мелкозернистого и легкого бетонов, изготовляемые по ГОСТ 7473, и устанавливает правила отбора проб и методы определения удобоукладываемости, средней плотности, пористости, расслаиваемости, температуры и сохраняемости свойств бетонной смеси.

Настоящий стандарт не распространяется на бетонные смеси крупнопористого и ячеистого бетонов, полистиролбетона и самоуплотняющиеся бетонные смеси.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 8.001-80* Государственная система обеспечения единства измерений. Организация и порядок проведения государственных испытаний средств измерений

* В Российской Федерации действуют ПР 50.2.009-94 “Государственная система обеспечения единства измерений. Порядок проведения испытаний и утверждения типа средств измерений”.

Читайте также:
Добавки в цемент: виды, применение, свойства

ГОСТ 8.326-89* Государственная система обеспечения единства измерений. Метрологическая аттестация средств измерений

* В Российской Федерации действуют ПР 50.2.009-94 “Государственная система обеспечения единства измерений. Порядок проведения испытаний и утверждения типа средств измерений”.

ГОСТ 8.383-80* Государственная система обеспечения единства измерений. Государственные испытания средств измерений. Основные положения

* В Российской Федерации действуют ПР 50.2.009-94 “Государственная система обеспечения единства измерений. Порядок проведения испытаний и утверждения типа средств измерений”.

ГОСТ 310.2-76 Цементы. Методы определения тонкости помола

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 1770-74 (ИСО 1042-83, ИСО 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 2789-73 Шероховатость поверхности. Параметры и характеристики

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 8269.0-97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний

ГОСТ 8735-88 Песок для строительных работ. Методы испытаний

ГОСТ 9533-81 Кельмы, лопатки и отрезовки. Технические условия

ГОСТ 9758-2012 Заполнители пористые неорганические для строительных работ. Методы испытаний

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 13646-68 Термометры стеклянные ртутные для точных измерений. Технические условия

ГОСТ 22685-89 Формы для изготовления контрольных образцов бетона. Технические условия

ГОСТ 24104-2001* Весы лабораторные. Общие технические требования

* В Российской Федерации действует ГОСТ Р 53228-2008 “Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания”.

ГОСТ 27006-86 Бетоны. Правила подбора состава

Примечание – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю “Национальные стандарты”, который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя “Национальные стандарты” за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Правила отбора проб и проведения испытаний

3.1 Пробы бетонной смеси для испытания при производственном контроле следует отбирать:

– при отпуске товарной бетонной смеси – на месте ее приготовления через 15 мин после ее выгрузки из смесителя в транспортное средство;

– при производстве сборных изделий и монолитных конструкций – на месте укладки бетонной смеси;

– при входном контроле качества бетонной смеси при изготовлении монолитных конструкций – из автобетоносмесителя через 15 мин после ее доставки и дополнительного перемешивания.

3.2 Пробу бетонной смеси для испытаний на месте укладки отбирают перед началом бетонирования. Отбор пробы из автобетоносмесителя проводят при непрерывном перемешивании бетонной смеси за один прием либо за два или три приема с интервалом не менее 1 мин. При непрерывной подаче бетонной смеси (ленточными транспортерами, бетононасосами) пробы отбирают в три приема в случайные моменты времени в течение не более 10 мин.

3.3 Объем отобранной пробы должен обеспечивать не менее двух определений всех нормируемых и контролируемых показателей качества бетонной смеси.

3.4 Отобранная проба перед проведением испытаний должна быть дополнительно перемешана.

Бетонные смеси, содержащие воздухововлекающие, газообразующие и пенообразующие добавки, а также предварительно разогретые смеси перед испытанием не перемешивают.

3.5 Испытание бетонной смеси и изготовление контрольных образцов бетона должно быть начато не позднее чем через 10 мин и закончено не позднее чем через 30 мин после отбора пробы.

3.6 Температура бетонной смеси от момента отбора пробы до момента окончания испытания не должна изменяться более чем на 5°С.

3.7 Условия хранения пробы бетонной смеси после ее отбора до момента испытания должны исключить потерю влаги или увлажнение.

3.8 Взвешивание образцов, изготовленных из проб бетонной смеси, следует проводить с погрешностью не более 5 г.

3.9 Поверку средств измерений и аттестацию испытательного оборудования следует проводить в соответствии с ГОСТ 8.001, ГОСТ 8.326, ГОСТ 8.383.

3.10 Результаты определения нормируемых и контролируемых показателей качества бетонной смеси должны быть занесены в журнал, в котором указывают:

– наименование организации-изготовителя и поставщика бетонной смеси;

– условное обозначение бетонной смеси по ГОСТ 7473;

– место отбора пробы;

– дату и время испытания;

– температуру бетонной смеси;

– результаты частных определений отдельных показателей качества бетонной смеси и средние результаты по каждому показателю.

3.11 При определении свойств бетонных смесей допускается применение других приборов и оборудования, кроме приведенных в настоящем стандарте, в случаях, если они соответствуют требованиям настоящего стандарта по точности и чувствительности.

Методика оценки точности и чувствительности альтернативного прибора для определения удобоукладываемости бетонной смеси приведена в приложении А.

Испытание бетона, растворов, ж/б конструкций

Бетон является несущим конструкционным материалом зданий и сооружений. Поэтому его технические характеристики должны соответствовать требованиям нормативных документов – ГОСТ и СНиП. Чтобы проверить соответствие материала заявленной марке проводят испытание бетона на: сжатие, изгиб, растяжение, морозостойкость и ряд других показателей, от которых зависит долговечность и несущая способность бетонных изделий, конструкций и зданий.

По результатам проведенных испытаний составляется специальный документ, так называемый «Паспорт качества материала», официальное название «Документ о качестве бетонной смеси», созданный по результатам лабораторных испытаний бетона на предприятии изготовителе. Это основной официальный документ, которым руководствуются строительные организации при возведении ответственных и специальных бетонных конструкций.

Способы испытания бетона

Бетон как строительный материал подвергают испытаниям как в затвердевшем, так и в незатвердевшем состоянии. При этом цели испытаний разные. В первом случае определяются прочностные и другие эксплуатационные характеристики твердого материала, а во втором случае его технологические показатели: удобоукладываемость, уплотняемость, пластичность и наличие воздуха.

Кроме того различают неразрушающие и разрушающие способы испытания. Рассмотрим виды испытаний бетонного раствора по «ходу» его применения – до схватывания и набора прочности и после схватывания и набора марочной прочности.

Испытание бетона ГОСТ 10181.1-81

Проверка показателей бетона в соответствии с требованиями данного нормативного документа производится лабораториями бетонных заводов сразу после приготовления товарного раствора.

  • Осадка конуса. С помощью этого способа определяют неоднородность и консистенцию материала. Эти показатели влияют на удобоукладываемость бетона. Суть метода заключается в заполнении металлического конуса проверяемым бетоном, измерение линейных показателей после снятия оболочки (конуса) и сравнения изменения габаритов полученной «бетонной паски» с табличными значениями.
  • Испытание на уплотнение. Данный способ позволяет установить коэффициент уплотнения конкретной партии строительного материала. Для определения данной характеристики используется следующее технологическое оборудование для испытания бетона – аппарат, состоящий из двух мерных емкостей с воронками. В первую воронку заливают проверяемую субстанцию. Воронка имеет клапан, через который раствор стекает во вторую воронку в емкость меньшего объема. Далее проверяемый материал попадает в специальную цилиндрическую форму. Плотность и коэффициент уплотнения раствора находящегося в цилиндрической форме вычисляется математическими способом.
  • Испытание на пластичность и изменение формы. В этом случае проверяемый материал заливают в испытательный конус определенных размеров, который устанавливают на специальный опорный столик. Столик имеет возможность при встряхивании опускаться вниз на несколько сантиметров. Далее форму осторожно снимают, а столик опускают. Бетон растекается по его поверхности. Проведя линейные измерения среднего диаметра «растекшийся» формы бетона определяют показатели пластичности проверяемого материала.
  • Проверка наличия воздушных пустот в бетонном растворе. Используется два метода. Первый метод – измерение веса образца бетона до и после встряхивания с перемешиванием в пикнометре. Соответственно для оценки наличия воздуха этим способом применяются весьма точные приборы способные определить незначительное отклонение массы. Второй метод – это метод давления. В этом случае применяют специальные воздухомеры, которые показывают содержание воздушных пустот в теле твердого бетона.
Читайте также:
Блоки керамзитобетонные: характеристики материала и его особенности

Для частных застройщиков, которые имеют дело с бетоном в первый, зачастую в последний раз в жизни, можно порекомендовать следующий контроль качества (испытания) бетона «эмпирическим» методом:

  • Цвет. Качественный бетон должен иметь серо-зеленоватую окраску. При этом чем «зеленее» поставленный бетон, тем лучше его качество. Желтый оттенок бетона, является признаком его недостойного качества.
  • На поверхности уложенного бетона должно появиться так называемое «цементное молочко». Чем гуще данный материал, тем выше качеством бетона.
  • Не должно быть фракций наполнителя непокрытых растром цемента и песка.
  • После полного твердения бетона стальной молоток должен со звоном отскакивать от поверхности, оставляя неглубокую вмятину.

ОТРЫВ СО СКАЛЫВАНИЕМ (диапазон измерений 5- 100 МПа)

  • частая проверка (минимум раз в 2 месяца)
  • относительная трудоемкость (требуется предварительное сверление отверстий под анкера)
  • тяжело использовать в густоармированных (ячейка армирования должна быть от 150 мм) и тонкостенных (толщина проверяемого слоя бетона должна быть не менее 100 мм). конструкциях.
  • при отрицательной температуре бетона (не ниже -10 °С) отверстие под анкер на всю глубину прогревается до температуры как минимум 0 °С.

Преимущества:

  • характеризуется наибольшей точностью измерений
  • самый широкий диапазон прочности (5-100 МПа)
  • не требует построения градуировочной зависимости по ГОСТ 22690)
  • позволяет использовать градуировочную зависимость в виде формулы R= m1 m2 P (Приложение В ГОСТ 22690), где

m1 – коэффициент, учитывающий максимальный размер крупного заполнителя и равный 1 при крупности менее 50 мм; m2 – коэффициент пропорциональности для перехода от усилия вырыва ,кН, к прочности бетона МПа. и определяемое по табл. В.1, ГОСТ 22690.

Тип анкера Предполагаемый диапазон прочности бетона, МПа Диаметр анкера, мм Глубина заделки анкера, мм Значение коэффициента m2 для тяжелого бетона
II 40-75 5-75 16 24 35 48 1,7 0,9

Для получения качественных измерений методом отрыва со скалыванием отверстие для заложения анкера должно быть не ближе 150 мм от края изделия, минимальная толщина конструкции -2 глубины заделки анкера

  • расстояние между участками испытаний — не менее величины пяти глубин заделки анкера
  • величина проскальзывания анкера должна контролироваться, и составлять не более 10% глубины заложения анкера (при большем проскальзывании происходит занижение показателя на 10-20%)

Достоверность неразрушающего контроля прочности бетона зависит от:

  • методики проведения испытаний, включающей выбор участков испытаний, их количества, состояния поверхности, возраста, условий твердения бетона
  • оптимального выбора методов контроля и приборов
  • правильного построения градуировочных зависимостей с учетом оценки погрешности их построения, исправности показателей применяемых приборов неразрушающего контроля

Большое значение имеет квалификация персонала, проводящего испытания. Контроль прочности бетона монолитных конструкций проводят по схеме В (с учетом характеристик однородности прочности бетона — коэффициента вариации прочности бетона в контролируемой партии) или по схеме Г (без учета характеристик однородности прочности бетона).

Методы испытаний застывшего бетона

Основным типом испытаний бетона, который применяют для всех типов конструкций, является испытания бетона на прочность при сжатии. Этот показатель указывается в маркировке бетона, что характеризует его важность.

Существует два независимых способа испытания на прочность. Это лабораторные испытания бетона на прочность перед отправкой готового материала на объект и проверка прочности конкретного застывшего материала непосредственно на строительной площадке. При этом для особо ответственных сооружений по результатам испытаний составляется протокол испытания бетона на прочность, в котором указываются полученные данные и дата испытания.

Рассмотрим оба способа подробнее. Порядок испытания бетона на прочность лабораторными способами регламентирован требованиями нормативного документа – действующий стандарт ГОСТ 10180-2012. Суть метода проста, и заключается в изготовлении кубических или цилиндрических образцов определенного размера.

Размеры кубиков для испытания бетона также определены требованиями указанного ГОСТ и составляют бетонные элементы с длиной ребра: 100, 150, 200, 250 и 300 миллиметров. Цилиндрические образцы для проверки на прочность могут иметь диаметр: 100, 150, 200, 250 и 300 миллиметров.

После заливки образцов и выдержки их в течение определенного времени, с помощью социального пресса осуществляется разрушение образца. При этом фиксируется математическая величина разрушающей силы, которая и характеризует прочность бетона на сжатие. Это очень точный, но не всегда приемлемый метод.

Строительство не может ждать пока образцы бетона схватятся и наберут марочную прочность. Поэтому строительные компании используют в своей практике эмпирические методы испытания бетона на прочность. Данные методы подразделяются на две основные группы: частично разрушающие бетон и неразрушающие бетон.

Технология частичного разрушения является самым достоверным методом и согласно требований нормативных документов обязательна при сдаче здания в эксплуатацию. Техническая суть технологии частичного разрушения заключается в клеевой фиксации специального стального диска на поверхности испытуемой конструкции.

Читайте также:
Дизайн ванной комнаты с крашеными стенами, советы и фото

Далее с помощью специального устройства диск отрывается вместе с куском бетона. Величина силы отрыва фиксируется специальным прибором – это и есть значение прочности данной бетонной конструкции.

Неразрушающий контроль бетона


В настоящее время, при контроле прочности бетона, все большее распространение, получают методы неразрушающего контроля. Методы неразрушающего контроля бетона — это, в первую очередь, методы механического и ультразвукового контроля.

Неразрушающий контроль бетона проводится по ГОСТ 22690 (механические методы) и ГОСТ 17624 и (ультразвуковой метод).

При контроле прочности бетона монолитных конструкций в проектном возрасте, проводят сплошной неразрушающий контроль прочности бетона всех конструкций контролируемой партии.

При контроле прочности бетона монолитных конструкций в промежуточном возрасте методами неразрушающего контроля испытывают не менее одной конструкции каждого вида (плита, стена, колонна и т.д.) из контролируемой партии.

Число контролируемых участков должно быть не менее:

  • трех на каждую захватку для плоских конструкций (перекрытия, стены)
  • одного на 4 м длины для каждой линейной горизонтальной конструкции (балка, ригель)
  • шести на каждую линейную вертикальную конструкцию (колонна, пилон)

Общее число участков измерений для расчета характеристик однородности прочности бетона партии конструкций должно быть не менее 20.

За единичное значение прочности бетона при неразрушающем контроле принимают среднюю прочность бетона контролируемого участка или зоны конструкции, или части монолитной или сборно-монолитной конструкции.

  • партия монолитных конструкций — часть, одна или несколько монолитных конструкций, изготовленных за определенное время
  • захватка — объем бетона монолитной конструкции или ее части, уложенный при непрерывном бетонировании одной или нескольких партий БСГ за определенное время
  • текущий коэффициент вариации прочности бетона — коэффициент вариации прочности бетона в контролируемой партии конструкций по схеме В

Число измерений, проводимых на каждом контролируемом участке конструкции определяются по ГОСТ 17624, ГОСТ 22690.

Прочность бетона определяют по предварительно установленным градуировочным зависимостям между прочностью бетона, полученной прямым разрушающим (выбуривание бетонных кернов, испытание кубов-образцов) или неразрушающим (отрыв со скалыванием) методами и косвенными характеристиками прочности при неразрушающем контроле (упругий отскок, ультразвук).

Методы неразрушающего контроля прочности (упругий отскок, ударный импульс отрыв со скалыванием, ультразвуковое прозвучивание) выбирают исходя из предполагаемых предельных значений прочности испытываемых конструкций.

К косвенным методам неразрушающего контроля прочности бетона относятся следующие методы:

Метод Предельные значения прочности бетона, МПа
Упругого отскока и пластической деформации 5-50
Ударного импульса 5-150
Отрыва 5-60

К прямым неразрушающим методам механического определения прочности относятся следующие методы:

Метод Предельные значения прочности бетона, МПа
Скалывания ребра 10-70
Отрыва со скалыванием 5-100

Существует также косвенный ультразвуковой метод определения прочности бетона (ГОСТ 17624-2012), основанный на связи между скоростью распространения ультразвуковых колебаний в бетоне и его прочностью.

Большинство приборов неразрушающего контроля работают при температуре наружного воздуха от – 10 °С до +50 °С.


Испытания бетона конструкций проводятся при положительной температуре бетона.

Допускается определять прочность бетона конструкций при отрицательной температуре, но не ниже минус 10 °С, при условии, что к моменту замораживания, конструкций находилась не менее одной недели при положительной температуре и относительной влажности воздуха не более 75 % (ГОСТ 22690-88, п. 1.4).

Неразрушающий контроль прочности бетона конструкций проводят с использованием приборов, основанных на методах местных разрушений (отрыв со скалыванием, скалывание ребра, отрыв стальных дисков), ударного воздействия на бетон (ударный импульс, упругий отскок, пластическая деформация) и ультразвукового прозвучивания.

В своей практической деятельности мы используем следующие приборы и методы неразрушающего контроля:

  • метод упругого отскока ( молоток «Шмидта»)
  • метод ультразвукового поверхностного прозвучивания (ультразвуковой прибор УК 1401)
  • отрыв со скалыванием (прибор «ПИБ»)

При испытании или обследовании железобетонных монолитных конструкций на предмет фактической прочности, мы сочетаем первые два косвенных метода с прямым методом «отрыв со скалыванием».

Методика проведения испытаний детально изложена в ГОСТ 22690 (п.п. 7.2 и 7.6), ГОСТ 17624.

Достоинства и недостатки приборов и методов неразрушающего контроля прочности бетона, применяемого нами, приведены ниже.

Определение прочности без разрушения бетона

Среди неразрушающих методов определения значения прочности самым популярным считается ультразвуковое испытание бетона. Метод основан на изменении скорости прохождения ультразвуковых волн через толщу материала.

Современные приборы для ультразвукового исследования бетона, являются «показывающими», то есть при проведении испытания выдают на дисплей показатель прочности в требуемых единицах. Основной недостаток «ультразвуковой» технологии – существенная погрешность измерений.

  • Испытание бетона на растяжение и изгиб. Технология проверка аналогична технологии испытания образцов бетона на прочность. Основное отличие проверка на растяжение и изгиб заключается в векторе приложения разрушающей нагрузки. При проверке на прочность образцы «давят» вертикальной нагрузкой, а при проверке на растяжение и изгиб разрушают горизонтальной и «консольной» силой.
  • Испытание бетона на морозостойкость. Морозостойкость бетона измеряется в количестве циклов «замораживания-размораживания», которое способна выдержать конструкция до начала разрушения. Данная величина также относится к основным техническим характеристикам, от которой зависит долговечность сооружения. Технология испытания на морозостойкость предусматривает замораживание оттаивание контрольных образцов в лабораторных условиях, после чего проводится сравнительный анализ потери прочности и соответственное определение величины морозостойкости.

(диапазон измерений позволяет контролировать прочность бетона класса В7,5 — В60)

  • высокая квалификация сотрудника ввиду реагирования прибора на изменение влажности, температуры, степени армирования бетона
  • построение градуировочной зависимости
  • возраст бетона не менее семи суток

Преимущества:

  • быстрота (малый вес)
  • контроль прочности бетона ведется в поверхностном слое толщиной сопоставимой с методом отрыва со скалыванием (50 мм)
  • при отрицательной температуре бетона (не ниже -10 °С) испытания проводятся на холодной поверхности бетона (отогревать бетон не надо)

Испытание бетона, растворов, ж/б конструкций

Услуги и цены

Новости

12 окт. 2017 г., 11:34:00

27 окт. 2017 г., 18:23:56

03 нояб. 2017 г., 15:15:00

24 июля 2019 г., 15:12:57

12 авг. 2019 г., 16:09:06

Испытание бетона на прочность, растворов, ж/б конструкций

Строительная лаборатория “Тест Констракшн” выполняет услуги по проведению испытаний бетона, строительных растворов и железобетонных конструкций. Испытания производятся в строгом соответствии с действующими ГОСТ как в лабораторных условиях, так и на строительных площадках.

При проведении испытаний проверяются следующие параметры:

  • Плотность;
  • Прочность;
  • Водонепроницаемость;
  • Морозостойкость;
  • Расположение арматуры в конструкциях
  • Толщины защитного слоя;
  • Влажность.

Методы определения прочности бетона

Существует два способа определения прочности: разрушающий и не разрушающий.

Читайте также:
Дверные деревянные коробки: технические параметры, сборка и монтаж

Ультразвуковое определение прочности бетона

Одним из самых эффективных методов проверки прочности и дефектов бетона, является ультразвуковая проверка. Кроме прочности, таким методом можно определить наличие пустот и других дефектов.

Существует два основных метода проверки бетона ультразвуком:

  • Сквозной метод, когда через всю толщину конструкции происходит просвечивание. При проведении данного метода, датчики измерения скорости ультразвуковых волн располагаются на противоположных сторонах;
  • поверхностный метод, когда датчики измерения скорости ультразвука располагаются на одной стороне.

Определение водонепроницаемости бетона

Водонепроницаемость – это одна из основных характеристик. От водонепроницаемости зависит, требуются ли дополнительные гидроизолирующие мероприятия, пластификатор и подходит ли бетон вообще. Значение параметра определяется лабораторно в соответствии с требованиями по ГОСТ 12730.5-84.

Виды испытаний на водонепроницаемость:

  • По мокрому пятну.
  • Коэффициент фильтрации.
  • Фильтратометрия за короткие сроки.
  • Вычисление воздухопроницаемости ускоренное.

Мокрое пятно

При проведении данного испытания, исследуются не менее шести образцов, с предварительным определением влажности бетона. К образцам в специальной форме, внутренним диаметром которого составляет 150 мм, с открытыми торцами, прикладывается водяное давление с шагом 0,2 МПа. Не менее часа вода должна обязательно пройти деаэрацию. Если вода просачивается через верхний торец в виде мокрого пятна или каплей, то испытания завершаются.

Образцы имеют разную высоту: 30, 50,100, 150 мм. Время выдержки для каждого образца тоже разное: 4, 6, 12, 16 часов.

Определение коэффициента фильтрации

Суть данного метода является определение объема фильтрата, проходящего при заданном давлении через образец. Проводится данный метод на специальной установке, где все образцы перед началом выдерживаются в специальных условиях. Выбуренные образцы также могут использоваться.

Давление с выдержкой через каждый час, поднимают ступенчато. Вода, которая прошла через образец, собирается и взвешивается. Влага, которая не имеет вид капель – поглощается сорбентом типа силикагеля. Данный метод достаточно долгий по времени и трудоемкий.

Фильтратометрия

Данный метод считается ускоренным и для его проведения используется ручной прибор-фильтратомер. Исследуются не менее шести образцов, путем измерения скорости падения давления, созданного насосом в 10 МПа. По результатам всех испытаний вычисляется среднее значение. Если давление падает быстро и поддерживать его получается, то коэффициент принимается большим, чем 10-8 см/с, что соответствует марке В2 или менее.

Определение воздушной проницаемости

Данный метод проводится при помощи прибора «Агама-2Р» в соответствии инструкцией.

Влияющие факторы на водонепроницаемость

Водонепроницаемость может регулироваться путем использования специальных вяжущих веществ, которые уменьшают пористость бетона, а также использование химических добавок. Современные добавки, присадки, уплотнители позволяют сократить пористость и придать материалу необходимую гидрофобность.

Водонепроницаемость можно повысить при помощи использования горизонтальной и/или вертикальной гидроизоляции. Но самой эффективной на сегодняшний день остается проникающая изоляция.

Определение подвижности бетона

Подвижность бетонной смеси одна из основных факторов, влияющих на формование материала в опалубке.

Основной технологический параметр бетонной смеси – удобоукладываемость – это способность раствора заполнять опалубку и принимать ее форму.

Определение подвижности бетонной смеси производится как на строительной площадке, так и в лаборатории.

Определение эластичности конусом является самым простым и частым методом измерения.

Определение прочности бетона на сжатие

В настоящее время классификация бетона (марка бетона) помогает проектировать бетонные и железобетонные конструкции с оптимальными характеристиками.

При использовании средних показателей прочности возникает риск, что реальные характеристики бетона окажутся ниже расчетных. Когда средние показатели используются в качестве наименьших, то приходится увеличивать размеры бетонной конструкции, а это шаг к удорожанию.

Методы определения прочности

Существует два способа определить прочность бетона и в обоих случаях необходимо использование сертифицированного оборудования. Существует два способа определения прочности разрушающий и неразрушающий.

Разрушающий способ

При проведении этого испытания используются образцы, очищенные от загрязнений и абсолютно ровными гранями. Их по очереди устанавливают под пресс и подвергают нагрузке, при этом показатели, при которых образцы начинают разрушатся, фиксируются в протоколе. По результатам испытания определяется фактическое значение, которое сравнивается с проектным и нормативным показателем.

Разрушающий способ обязательно используется на заводах, занимающихся производством ЖБИ и на строительных площадках.

Лабораторные исследования разрушающим способом считаются наиболее достоверными, а полученные значения учитываются архитекторами и конструкторами.

Испытание бетона на прочность, растворов, ж/б конструкций

Строительная лаборатория “Тест Констракшн” выполняет услуги по проведению испытаний бетона, строительных растворов и железобетонных конструкций. Испытания производятся в строгом соответствии с действующими ГОСТ как в лабораторных условиях, так и на строительных площадках.

При проведении испытаний проверяются следующие параметры:

  • Плотность;
  • Прочность;
  • Водонепроницаемость;
  • Морозостойкость;
  • Расположение арматуры в конструкциях
  • Толщины защитного слоя;
  • Влажность.

Методы определения прочности бетона

Существует два способа определения прочности: разрушающий и не разрушающий.

Ультразвуковое определение прочности бетона

Одним из самых эффективных методов проверки прочности и дефектов бетона, является ультразвуковая проверка. Кроме прочности, таким методом можно определить наличие пустот и других дефектов.

Существует два основных метода проверки бетона ультразвуком:

  • Сквозной метод, когда через всю толщину конструкции происходит просвечивание. При проведении данного метода, датчики измерения скорости ультразвуковых волн располагаются на противоположных сторонах;
  • поверхностный метод, когда датчики измерения скорости ультразвука располагаются на одной стороне.

Определение водонепроницаемости бетона

Водонепроницаемость – это одна из основных характеристик. От водонепроницаемости зависит, требуются ли дополнительные гидроизолирующие мероприятия, пластификатор и подходит ли бетон вообще. Значение параметра определяется лабораторно в соответствии с требованиями по ГОСТ 12730.5-84.

Виды испытаний на водонепроницаемость:

  • По мокрому пятну.
  • Коэффициент фильтрации.
  • Фильтратометрия за короткие сроки.
  • Вычисление воздухопроницаемости ускоренное.

Мокрое пятно

При проведении данного испытания, исследуются не менее шести образцов, с предварительным определением влажности бетона. К образцам в специальной форме, внутренним диаметром которого составляет 150 мм, с открытыми торцами, прикладывается водяное давление с шагом 0,2 МПа. Не менее часа вода должна обязательно пройти деаэрацию. Если вода просачивается через верхний торец в виде мокрого пятна или каплей, то испытания завершаются.

Образцы имеют разную высоту: 30, 50,100, 150 мм. Время выдержки для каждого образца тоже разное: 4, 6, 12, 16 часов.

Определение коэффициента фильтрации

Суть данного метода является определение объема фильтрата, проходящего при заданном давлении через образец. Проводится данный метод на специальной установке, где все образцы перед началом выдерживаются в специальных условиях. Выбуренные образцы также могут использоваться.

Читайте также:
Виды витражного остекления лоджии и балкона

Давление с выдержкой через каждый час, поднимают ступенчато. Вода, которая прошла через образец, собирается и взвешивается. Влага, которая не имеет вид капель – поглощается сорбентом типа силикагеля. Данный метод достаточно долгий по времени и трудоемкий.

Фильтратометрия

Данный метод считается ускоренным и для его проведения используется ручной прибор-фильтратомер. Исследуются не менее шести образцов, путем измерения скорости падения давления, созданного насосом в 10 МПа. По результатам всех испытаний вычисляется среднее значение. Если давление падает быстро и поддерживать его получается, то коэффициент принимается большим, чем 10-8 см/с, что соответствует марке В2 или менее.

Определение воздушной проницаемости

Данный метод проводится при помощи прибора «Агама-2Р» в соответствии инструкцией.

Влияющие факторы на водонепроницаемость

Водонепроницаемость может регулироваться путем использования специальных вяжущих веществ, которые уменьшают пористость бетона, а также использование химических добавок. Современные добавки, присадки, уплотнители позволяют сократить пористость и придать материалу необходимую гидрофобность.

Водонепроницаемость можно повысить при помощи использования горизонтальной и/или вертикальной гидроизоляции. Но самой эффективной на сегодняшний день остается проникающая изоляция.

Определение подвижности бетона

Подвижность бетонной смеси одна из основных факторов, влияющих на формование материала в опалубке.

Основной технологический параметр бетонной смеси – удобоукладываемость – это способность раствора заполнять опалубку и принимать ее форму.

Определение подвижности бетонной смеси производится как на строительной площадке, так и в лаборатории.

Определение эластичности конусом является самым простым и частым методом измерения.

Определение прочности бетона на сжатие

В настоящее время классификация бетона (марка бетона) помогает проектировать бетонные и железобетонные конструкции с оптимальными характеристиками.

При использовании средних показателей прочности возникает риск, что реальные характеристики бетона окажутся ниже расчетных. Когда средние показатели используются в качестве наименьших, то приходится увеличивать размеры бетонной конструкции, а это шаг к удорожанию.

Методы определения прочности

Существует два способа определить прочность бетона и в обоих случаях необходимо использование сертифицированного оборудования. Существует два способа определения прочности разрушающий и неразрушающий.

Разрушающий способ

При проведении этого испытания используются образцы, очищенные от загрязнений и абсолютно ровными гранями. Их по очереди устанавливают под пресс и подвергают нагрузке, при этом показатели, при которых образцы начинают разрушатся, фиксируются в протоколе. По результатам испытания определяется фактическое значение, которое сравнивается с проектным и нормативным показателем.

Разрушающий способ обязательно используется на заводах, занимающихся производством ЖБИ и на строительных площадках.

Лабораторные исследования разрушающим способом считаются наиболее достоверными, а полученные значения учитываются архитекторами и конструкторами.

Современные методы испытания бетона

  • Как определяется прочность бетона
  • От чего зависит получение заданного класса бетона
  • Классификация методов испытания бетона на прочность
  • Разрушающие методы
  • Неразрушающие методы
    • Прямые:
    • Косвенные:
  • Другие виды испытаний
    • Испытание бетона на водонепроницаемость
    • Определение параметров морозостойкости
  • Маркировка смесей и готового бетона
  • Список используемой нормативно-технической документации:

Пренебрегать методами контроля бетона означает подвергать жизнь людей опасности. Чтобы не допустить брак при строительстве любых объектов на каждом этапе создания и созревания бетона устанавливаются определенные методы контроля. В статье рассмотрены эти методы с указанием соответствующих регламентирующих документов.

Как определяется прочность бетона

Проверки начинаются ещё до создания формовочной смеси. Проверяют параметры и дозировку составляющих компонентов при замешивании смеси. Также проверке по ряду параметров подвергается сама бетонная смесь, а именно: удобоукладываемость, средняя плотность, расслаиваемость, пористость, температура, сохраняемость свойств во времени, объем вовлеченного воздуха.

Однако, зачастую, непосредственно на строительной площадке проверяются только удобоукладываемость и температура. После укладки бетонной смеси конструкция проверяется в промежуточном возрасте – 7 суток. К этому времени бетон должен набрать не менее 70% от требуемой проектом прочности. Завершается процесс исследованиями прочностных характеристик после полного созревания. А в реальности — продолжается на всём протяжении жизни бетонной конструкции. В документах принято, что бетон созревает, или набирает проектную прочность, на 28-й день твердения.

Формирование заданной прочности бетона зависит от совокупности физических и химических факторов на протяжении каждого этапа. Для понимания всего процесса разделим эти этапы на:

  1. Подготовку компонентов для приготовления каждой партии бетонной смеси.
  2. Замешивание бетонной смеси в растворном узле.
  3. Заливку готовой смеси в формы или опалубку на объекте.
  4. Набор прочности.
  5. Эксплуатацию сооружения.

От чего зависит получение заданного класса бетона

Что проверяют на первом этапе? Перед запуском производства и подачей компонентов бетонной смеси в смеситель технолог подбирает состав и таким образом задает характеристики будущей смеси, далее вводит параметры исходного сырья на пульт управления бетоносмесительного узла. Автоматика современных БСУ производит дозирование компонентов в необходимых пропорциях с учётом естественной влажности, температуры и применяемых добавок. Каждая партия бетонной смеси должна быть испытана на производстве, а также иметь документ о качестве по ГОСТ 7473-2010 (Приложение Б), который должен отражать следующие основные параметры:

  • наименование, адрес и телефон производителя и поставщика бетонной смеси;
  • дата и время отгрузки бетонной смеси;
  • вид бетонной смеси и ее условное обозначение;
  • проектный класс бетона по прочности;
  • применяемые добавки:
    • пластификаторы;
    • ускорители;
    • гидрофобизаторы;
    • антифризы;
  • номер номинального состава бетонной смеси;
  • жизнеспособность (сохраняемость удобоукладываемости);
  • наибольшая крупность заполнителя.

Примечание: На деле, зачастую, производитель может пытаться умолчать о некоторых пунктах документа о качестве по собственному усмотрению или по просьбе подрядчика, поэтому приходится следить и требовать корректного составления данного документа.

После смешения компонентов испытатели берут смесь одного номинального состава из бетоносмесителя. Из нее отливают стандартные образцы для испытаний.

Лаборанты учитывают разницу в физическом и химическом воздействии на бетонную смесь, которая отправлена на объект, с той, что поступила к ним на испытания в лабораторию. Причина в том, что существует зависимость набора прочности бетона от дополнительных факторов:

  • время от замешивания смеси до укладки в опалубку;
  • вибрационное воздействие на смесь;
  • равномерность заполнения формы или опалубки;
  • температура окружающей среды;
  • изменение водоцементного соотношения рабочими на объекте.

Эти факторы будут различаться между лабораторными условиями и стройкой. Чтобы получить точные показатели, также берут пробы непосредственно на стройплощадке. Образцы представляют собой кубы с длиной ребра 10 см. Их маркируют, а после доставляют на исследование. Иногда проверку проводят прямо на объекте. Все работы выполняют согласно принятой в отрасли НТД (нормативно-технической документации).

Классификация методов испытания бетона на прочность

В XXI веке применяют два способа тестирования: разрушающие и неразрушающие методы испытаний. Общая цель этих способов — получить показания приборов и соотнести их с характеристиками, заявленными в ГОСТ 22690, ГОСТ 17624 и 10180. Затем, на основании полученных результатов, определить класс бетона по прочности.

Читайте также:
Инфракрасное отопление гаража – современный и удобный вариант

Разрушающие методы

Испытания механическим разрушением предварительно отформованных образцов проводят для проверки предельных параметров:

  • на сжатие;
  • на растяжение при раскалывании;
  • на растяжение при изгибе;
  • на осевое растяжение.

В лабораторных условиях проверяют прочность по кубикам или балочкам определенных размеров. Их отливают в формы для бетонной смеси (регулируется ГОСТ 10180). Образцы для испытаний также отбирают из готовых конструкций (регулируется ГОСТ 28570). При проведении испытания кубик давят в гидравлическом прессе до разрушения. Важно, что в процессе проверки раздавливают не единичный экземпляр, а серию образцов. Полученные измерения усредняют, а результаты заносят в протокол испытаний. Этим достигается уменьшение погрешности.

Перед испытаниями образцов бетона происходит сбор информации о материале, запрашиваются паспорта качества и исходя из этого подбирается оптимальный режим проведения испытаний. Но иногда случается так, что прочность оказывается в 1,5 – 2 раза выше расчётной. Последствия данной неожиданности мы и отразили в данном ролике.

Неразрушающие методы

ГОСТ 22690 объединяет в эту группу прямые и косвенные механические методы проверки прочности. Первые основаны на замерах механических воздействий на испытуемый материал. Вторые – на сравнении показаний приборов, т.е. косвенных характеристик с прочностными показателями разрушающих методов.

Прямые:

  • Отрыв металлических дисков. Позволяет исследовать параметры местного разрушения бетона в месте отрыва приклеенного к нему металлического диска. Приложенное для отрыва усилие фиксируют прибором типа «Оникс». Полученный показатель делят на площадь диска. Затем число сверяют со справочной информацией.

Косвенные:

  • Ультразвуковой контроль прочности бетона.Принятое сокращение — УЗК. Это метод базируется на разной скорости прохождения ультразвуковых волн через бетоны различной прочности. Проверку производят методом сквозного и поверхностного прозвучивания. Работы регламентируют ГОСТом 17624. В этом документе зафиксированы требования к технологии проведения испытаний на объектах строительства. Также указаны формы протоколов испытаний. Преимущество этого способа заключается в точности (при использовании современных приборов) и быстроте получения показателей. Но при применении УЗК необходимо произвести дополнительные вычисления и построить градуировочную зависимость, которая свяжет полученные данные с прочностью материала.

  • Ударно-импульсный способ. При проведении испытания прибор считывает энергию удара и ее изменение в момент соударения бойка с поверхностью бeтона. Точность измерений при этом способе невысокая и несравнима с показателями лабораторных тестов. Зато есть преимущества в простоте процесса.
  • Метод упругого отскока. Метод основан на связи прочности бетона со значением отскока бойка от поверхности бетона. Измеряют величину единицы отскока и далее, вычисляют прочность по заранее построенной градуировочной зависимости. Для работы применяют компактный прибор — молоток Шмидта, инструмент, который изобретен ещё в 1948 году. Из несущественных минусов отметим необходимость предварительной подготовки площадки, на которой проводят измерения.

  • Метод пластической деформации. Это тоже способ, которым проверяют прочность бетонной поверхности. Используется ударный инструмент — молоток Кашкарова. Им ударяют по листам бумаги с копиркой, которые выкладывают на исследуемую поверхность. Затем замеряют параметры отпечатка на бумаге, который оставляет эталонный стержень на конце молотка. Показатели соотносят со справочными цифрами, взятыми из нормативных документов. Является довольно экзотическим методом, который редко применяется на практике, ввиду сложности с воспроизводимостью измерений разными испытателями.

Другие виды испытаний

Строительные нормативы при возведении зданий предписывают застройщикам проверять различные параметры бетонных конструкций. Для этого они пользуются услугами строительных лабораторий. Чаще всего определяют следующие характеристики:

  • степень карбонизации;
  • диаметр и расположение арматуры в готовой конструкции;
  • измерение величины защитного слоя;
  • влажность поверхности;
  • плотность.

Также в лабораториях, для определения важных характеристик, обязательно тестируют образцы на водонепроницаемость и морозостойкость.

Испытание бетона на водонепроницаемость

От показателя водонепроницаемости бетона зависит его прочность и морозостойкость. Все исследовательские процедуры на определение марки по водонепроницаемости выполняют по регламенту ГОСТ 12730.5.

Образцы заливают в формы-цилиндры с диаметром 150 мм или формы-кубы с ребром 150 мм. После созревания их вынимают и тестируют водяным давлением на лабораторном оборудовании. Для уменьшения погрешности показателей в лабораториях исследуют не менее 6 образцов. В зависимости от требований применяют различные способы испытаний бетонных образцов на пропускание влаги:

  • используют метод «мокрого пятна»;
  • вычисляют коэффициент фильтрации;
  • определяют глубину проникания воды под давлением;
  • проводят экспресс-тест по воздухопроницаемости.

Техническое оснащение показывает уровень лаборатории и ее возможности по получению результатов проверок.

Определение параметров морозостойкости

Требования к морозостойкости бетона вызваны климатическими факторами на территории России. Проектировщики указывают этот параметр в проектах, а службы контроля включают его в список испытаний на предварительном этапе строительства. Морозостойкость зависит от плотности смеси и отсутствия пор, в которых может скапливаться вода.

Испытания на морозостойкость проводятся только в лабораториях. Работы регламентируются ГОСТ 10060-2012. Образцы замораживают в холодильных камерах до температуры от -18 С до -50 С. Затем бетонный кубик размораживают на воздухе или в водно-солевом растворе при t=+20C. Это считается полным циклом. После определенного количества циклов бетонный камень подвергают стандартной проверке на прочность с помощью гидравлического пресса.

Лаборанты определяют количество циклов, при котором сохраняется марочная прочность. Результаты заносят в протокол испытаний. Без подписи ответственного лица документ не действителен.

Маркировка смесей и готового бетона

Маркировка бетона регулируется ГОСТ 7473. Она отражает свойства, которые заложены производителем. Разберём принятые обозначения на одном примере:

Аббревиатуры БСТ, БСМ, БСЛ означает тип бетонной смеси: тяжёлая, мелкозернистая или лёгкая. Эти сокращения приняты в отрасли и закреплены в ГОСТе.

Буквой B обозначается класс по прочности в МПа.

Буквой П, Ж, Р обозначают принадлежность смесей к группам по удобоукладываемости: подвижные, жёсткие, растекающиеся.

Латинской буквой F маркируют параметр морозостойкости. Показывает, какое количество циклов замораживания-оттаивания выдерживает насыщенный водой бетон без потери прочности или массы.

Латинская буква W в маркировке означает водонепроницаемость. Она сочетается с четными числами от 2 до 20. Единицей измерения этого параметра принято считать давление в МПа×10⁻¹. Этим показателем характеризуют максимальный водный напор, при котором бетон не пропускает воду.

Испытание бетона, растворов, ж/б конструкций

  • Главная
  • О компании
  • Наше производство
  • Партнеры
  • Прайс-лист
  • Вакансии
  • Сделать заявку
  • Доставка
  • Контакты
Читайте также:
Знакомство с композитной черепицей : описание и особености, фото

Товары

  • Визуальный контроль
  • Ультразвуковой контроль
  • Радиографический контроль
  • Капиллярный контроль
  • Магнитный контроль
  • Вихретоковый контроль
  • Электрический контроль
  • Контроль герметичности
  • Тепловой контроль
  • Спектрометрия
  • Контроль бетона
  • Контроль покрытий
  • Твердометрия
  • Дозиметрия
  • Метрологическое оборудование
  • Прочее оборудование
  • Учебные материалы

Услуги

  • Аттестация лабораторий НК
  • Аттестация персонала НК
  • Поверка и калибровка
  • Услуги по контролю
  • Аренда приборов НК
  • Обучение работе с приборами НК
  • Дополнительное образование по НК
  • Аттестация персонала РК
  • Разработка систем контроля
  • Разработка методик

Полезная информация

  • Онлайн-тестирование по методам НК
  • Материалы для учащихся
  • Статьи по неразрушающему контролю
  • ГОСТы по неразрушающему контролю
  • Нормативы атомной отрасли
  • Руководящие документы (РД)
  • Документы для аттестации
  • Европейские стандарты – EN
  • Международные стандарты – ISO
  • Отраслевые нормативы
  • Отраслевые средства НК
  • Руководства по эксплуатации
  • Нормативы по метрологии
  • Словарь определений НК
  • Технологические карты по НК
  • Наш канал на YouTube
  • Полезные ссылки по НК
  • Архив новостей
  • Карта сайта
  • Главная ::
  • Статьи по неразрушающему контролю ::
  • Полезная информация ::
  • Статьи по неразрушающему контролю ::
  • Методы и приборы неразрушающего контроля бетона

Методы и приборы неразрушающего контроля бетона

Для оценки состояния бетонных конструкций необходим всесторонний анализ факторов, влияющих на их эксплуатационные характеристики, такие как прочность, толщина защитного слоя, диаметр арматуры, теплопроводность, влажность, адгезия покрытий и т.д. Неразрушающие методы контроля особенно актуальны, когда характеристики бетона и арматуры неизвестны, а объёмы контроля значительны. Методы НК дают возможность контроля как в лабораторных условиях, так и на строительных площадках в процессе эксплуатации.

В чём плюсы неразрушающего контроля:

  • Возможность не организовывать на площадке лабораторию оценки бетона.
  • Сохранение целостности проверяемой конструкции.
  • Сохранение эксплуатационных характеристик сооружений.
  • Широкая сфера применения.

Лаборатория НТЦ «Эксперт» оказывает услуги по контролю бетона методами УЗК, магнитной индукции и методом упругого отскока. Данные методы дают возможность определять прочность бетона, наличие внутренних дефектов, глубину и диаметр арматуры. Неразрушающие методы применимы, когда нет возможности изъятия образцов для контроля прямыми методами, особенно в процессе строительства и реконструкции. Процедура обследования бетонных конструкций регламентирована ГОСТ 22690-2015 и ГОСТ 17624-2012. Общие правила проверки качества бетона изложены в ГОСТ 18105-2010.

При всем многообразии контролируемых параметров контроль прочности бетона занимает особое место, поскольку при оценке состояния конструкции определяющим фактором является соответствие фактической прочности бетона проектным требованиям.

Процедура обследований регламентирована ГОСТ 22690-2015 и ГОСТ 17624-2012. Общие правила проверки качества бетона изложены в ГОСТ 18105-2010. Неразрушающий контроль прочности бетона подразумевает применение механических методов (удар, отрыв, скол, вдавливание) и ультразвукового сканирования.

Контроль прочности готовых бетонных конструкций как правило проводится по графику, в установленном проектом возрасте, либо при необходимости, например, когда планируется реконструкция. Контроль прочности строящихся конструкций даёт возможность оценить распалубочную и отпускную прочность, сравнить реальные характеристики материала с паспортными.

Методы неразрушающего контроля прочности бетона делят на две группы

Прямые методы испытания бетона (методы местных разрушений)

Методы местных разрушений относят к неразрушающим условно. Их основное преимущество – достоверность. Они дают настолько точные результаты, что их используют для составления градуировочных зависимостей для косвенных методов. Испытания проводятся по ГОСТ 22690-2015.

Метод Описание Плюсы Минусы
Метод отрыва со скалыванием Оценка усилия, которое требуется, чтобы разрушить бетон, вырывая из него анкер (видео). – Высокая точность.
– Наличие общепринятых градуировочных зависимостей, зафиксированных ГОСТом.
– Трудоёмкость.
– Невозможность использовать в оценке прочности густоармированных сооружений, сооружений с тонкими стенами.
Скалывание ребра Измерение усилия, которое требуется, чтобы сколоть бетон на углу конструкции. Метод применяется для исследования прочности линейных сооружений: свай, колонн квадратного сечения, опорных балок. – Простота использования.
– Отсутствие предварительной подготовки.
– Не применим, если слой бетона меньше 2 см или существенно повреждён.
Отрыв дисков Регистрация усилия для разрушения бетона при отрыве от него металлического диска. Способ широко использовался в советское время, сейчас почти не применяется из-за ограничений по температурному режиму. – Подходит для проверки прочности густоармированных конструкций.
– Не такой трудоёмкий, как отрыв со скалыванием.
– Необходимость подготовки: диски нужно наклеить на бетонную поверхность за 3-24 часа до проверки.

Основные недостатки методов местных разрушений – высокая трудоёмкость, необходимость расчёта глубины прохождения арматуры, её оси. При испытаниях частично повреждается поверхность конструкций, что может повлиять на их эксплуатационные характеристики.

Косвенные методы испытания бетона

В отличие от методов местных разрушений, методы, основанные на ударно-импульсном воздействии на бетон, имеют большую производительность. Однако, контроль прочности бетона ведется в поверхностном слое толщиной 25-30 мм, что ограничивает их применение. В упомянутых случаях необходима зачистка поверхности контролируемых участков бетона или удаление поврежденного поверхностного слоя.

Неразрушающий контроль прочности бетона на заводах ЖБИ и в строительных лабораториях осуществляется после приведения градуировочных зависимостей приборов в соответствие с фактической прочностью бетона по результатам испытания контрольных партий в прессе.

Метод Описание Плюсы Минусы
Ударного импульса Регистрация энергии, которая появляется при ударе специального бойка. Для обследований используется молоток Шмидта.
Как работает молоток Шмидта
– Компактное оборудование.
– Простота.
– Возможность одновременно устанавливать класс бетона.
– Относительно невысокая точность
Упругого отскока Измерение пути бойка при ударе о бетон. Для обследования используют склерометр Шмидта и аналогичные устройства. – Простота и скорость исследования. – Жёсткие требования к процедуре подготовки контрольных участков.
– Техника требует частой поверки.
Пластической деформации Измерение отпечатка, оставшегося на бетоне при ударе металлическим шариком. Метод устаревший, но используется часто. Для оценки применяют молоток Кашкарова и аппараты статического давления.
Оценка прочности бетона молотком Кашкарова.
– Доступность оборудования.
– Простота.
– Невысокая точность результатов.
Ультразвуковой метод Измерение скорости колебаний ультразвука, проходящего сквозь бетон. – Возможность проводить массовые изыскания неограниченное число раз.
– Невысокая стоимость исследований.
– Возможность оценить прочность глубинных слоёв конструкции.
– Повышенные требования к качеству поверхности.
– Требуется высокая квалификация сотрудника.


Метод ударного импульса

Метод ударного импульса – самый распространённый среди неразрушающих методов из-за простоты измерений. Он позволяет определять класс бетона, производить измерения под разными углами к поверхности, учитывать пластичность и упругость бетона.

Суть метода. Боёк со сферическим ударником под действием пружины ударяется о поверхность. Энергия удара расходуется на деформации бетона. В результате пластических деформаций образуется лунка, в результате упругих возникает реактивная сила. Электромеханический преобразователь превращает механическую энергию удара в электрический импульс. Результаты выдаются в единицах измерения прочности на сжатие.

Читайте также:
Браслет из кожи, проволоки и бисера своими руками

К достоинствам метода относят оперативность, низкие трудозатраты, отсутствие сложных вычислений, слабую зависимость от состава бетона. Недостатком считается определение прочности в слое глубиной до 50 мм.

Метод упругого отскока

Метод упругого отскока заимствован из практики определения твёрдости металла. Для испытаний применяют склерометры – пружинные молотки со сферическими штампами. Система пружин допускает свободный отскок после удара. Шкала со стрелкой фиксирует путь ударника при отскоке. Прочность бетона определяют по градуировочным кривым, которые учитывают положение молотка, так как величина отскока зависит от его направления. Среднюю величину вычисляют по данным 5-10 измерений, выполненных на определённом участке. Расстояние между местами ударов – от 30 мм.

Диапазон измерений методом упругого отскока – 5-50 МПа. К достоинствам метода относят простоту и скорость измерений, возможность оценки прочности густоармированных конструкций. Ключевые недостатки такие же, как у других ударных методов: контроль прочности в поверхностном слое (глубина 20-30 мм), необходимость частых поверок (каждые 500 ударов), построение градуировочных зависимостей.

Ниже представлены измерители прочности бетона, работающие по принципу ударного импульса, из ассортимента нашей компании


Метод пластической деформации

Метод пластической деформации считается одним из самых дешёвых. Его суть – в определении твёрдости поверхности посредством измерения следа, который оставляет стальной шарик/стержень, встроенный в молоток. При проведении испытаний молоток располагают перпендикулярно поверхности бетона и совершают несколько ударов. С помощью углового масштаба измеряют отпечатки на бойке и бетоне. Для облегчения измерений диаметров используют листы копировальной или белой бумаги. Полученные характеристики фиксируют и вычисляют среднее значение. Бетонная прочность определяется по соотношению размеров отпечатков.

Принцип действия приборов для испытаний методом пластических деформаций основан на вдавливании штампа при помощи удара либо статического давления. Устройства статических давлений применяются ограниченно, более распространены приборы ударного действия – ручные и пружинные молотки, маятниковые устройства с шариковым/дисковым штампом. Твёрдость стали штампов минимум HRC60, диаметр шарика — минимум 10 мм, толщина диска — не меньше 1 мм. Энергия удара должна быть равна или больше 125 H.

Метод прост, может применяться в густоармированных конструкциях, отличается быстротой, но подходит для оценки прочности бетона не больше М500.

Ультразвуковое обследование

Ультразвуковой метод – это регистрация скорости прохождения ультразвуковых волн. По технике проведения испытаний можно выделить сквозное ультразвуковых прозвучивание, когда датчики располагают с разных сторон тестируемого образца, и поверхностное прозвучивание, когда датчики расположены с одной стороны. Сквозной метод позволяет, в отличие от всех остальных методов НК прочности, контролировать прочность в приповерхностных и глубоких слоях конструкции.

Ультразвуковые приборы неразрушающего контроля бетона могут использоваться не только для контроля прочности бетона, но и для дефектоскопии, контроля качества бетонирования, определения глубины и поиска арматуры в бетоне. Они позволяют многократно проводить массовые испытания изделий любой формы, вести непрерывный контроль нарастания или снижения прочности.

На зависимость «прочность бетона – скорость ультразвука» влияют количество и состав заполнителя, расход цемента, способ приготовления бетонной смеси, степень уплотнения бетона. Недостатком метода считается довольно большая погрешность при переходе от акустических характеристик к прочностным.

Ниже даны ссылки на приборы неразрушающего контроля бетона, представленные в ассортименте нашей компании

Кроме перечисленных способов контроля прочности существуют менее распространённые. На стадии экспериментального использования метод электрического потенциала, инфракрасные, вибрационные, акустические методы.

Опыт ведущих специалистов по неразрушающему контролю прочности бетона показывает, что в базовый комплект специалистов, занятых обследованием, должны входить приборы, основанные на разных методах контроля: отрыв со скалыванием (скалывание ребра), ударный импульс (упругий отскок, пластическая деформация), ультразвук, а также измерители защитного слоя и влажности бетона, оборудование для отбора образцов.

Погрешность методов неразрушающего контроля прочности бетона

Наименование метода Диапазон применения*, МПа Погрешность измерения**
1 Пластическая деформация 5 . 50 ± 30 . 40%
2 Упругий отскок 5 . 50 ± 50%
3 Ударный импульс 10 . 70 ± 50%
4 Отрыв 5 . 60 нет данных
5 Отрыв со скалыванием 5 . 100 нет данных
6 Скалывание ребра 10 . 70 нет данных
7 Ультразвуковой 10 . 40 ± 30 . 50%
* по ГОСТ 17624 и ГОСТ 22690;
** источник: Джонс Р., Фэкэоару И. Неразрушающие методы испытаний бетонов. М., Стройиздат, 1974. 292 с.

Процедура оценки

Общие правила контроля прочности бетона изложены в ГОСТ 18105-2010. Требования к контрольным участкам приведены в следующей таблице

Испытание образцов (кубиков) бетона на прочность, лабораторные исследования

Испытание бетона – важный и обязательный этап, необходимый для проверки качества используемого материала при реализации ремонтно-строительных работ. С целью подтверждения материала заявленным характеристикам и показателям, нормам СНиП и ГОСТ, его проверяют на прочность, сопротивление на изгиб/растяжение. Также дополнительно могут проверяться удобоукладываемость, плотность, морозостойкость, водонепроницаемость и т.д.

Основные контролируемые и нормируемые показатели качества бетона:

  • Прочность на сжатие – определяется в классах, обозначается буквой В
  • Прочность на осевое растяжение – также определяется классами, индекс Bt
  • Морозостойкость – исчисляется марками, обозначается F
  • Водонепроницаемость – также марка, буква W
  • Средняя плотность – указывают в марках, индекс D

Испытания бетона могут проводиться с использованием различных методов – исследуются только что залитые или вырубленные из монолита образцы, разрушающие и неразрушающие способы и т.д. Оптимальный вариант испытаний определяют специалисты или сам мастер, с учетом имеющегося в его распоряжении арсенала знаний, навыков, инструментов.

От чего зависит и на что влияет прочность бетона

Показатель прочности бетона – самая важная характеристика материала, которая учитывается как в процессе проектирования и выполнения расчетов, так и при выполнении работ. Прочность бетона задает марка, обозначается классом В (измерение в МПа) или М (кг/см2), отображает максимальное давление сжатия, которое материал может спокойно выдержать без деформации.

Когда проводится испытание бетона на прочность, лаборатория или строительная организация (возможно, сам мастер) руководствуются требованиями основных нормативных документов – это ГОСТы 10180-2012, 22690-88, 18105-2010, 28570.

Способность бетона эффективно сопротивляться внешнему воздействию благодаря внутреннему напряжению напрямую зависит от марки цемента и компонентов, входящих в состав раствора. При проверке бетона на соответствие указанной марке, на исследуемом образце не должно быть деформаций, разрушений, расслоений, трещин, сколов и т.д.

Читайте также:
Бурение скважин на воду. Описание и цены бурения скважин

Лабораторные испытания бетона на прочность должны проводиться обязательно, особенно в случае заливки важных конструкций, несущих элементов и т.д. Ведь даже минимальное несоответствие (которое часто становится результатом экономии на цементе, других компонентах) может стать причиной быстрого разрушения здания, элемента конструкции.

Прочность состава зависит от: марки цемента, соотношения наполнителей и цемента, фракции наполнителей, качества всех компонентов, чистоты воды, введенных в состав пластификаторов и присадок. Если планируется заливать конструкции, подвергаемые серьезным нагрузкам, бетон дополнительно упрочняют армированием стальными прутьями или сетками, проволокой.

Большое влияние на прочность бетона, испытание которого проводится, оказывают внешние условия, в которых выполняется заливка и сохнет бетон. Также существенно повышается прочность при использовании вибрации, которая удаляет пузырьки воздуха из монолита, делает его более плотным.

Если бетон заливается при минусовых температурах, то компоненты и сам материал либо прогревают, либо смешивают со специальными противоморозными добавками. Могут устанавливаться электроды в заливку, применяться укрытие основания теплоизоляционными материалами, опилками и т.д. Чтобы поверхность монолита не покрывалась трещинами, нужно ее после заливки увлажнять, препятствуя слишком быстрому испарению влаги.

При условии соответствия бетона указанным показателям прочности влияние других факторов на качество раствора можно уменьшить или нивелировать.

Классификация методов испытаний

Испытания бетона проводятся с использованием различных методов, выбор которых зависит от имеющихся мощностей, условий эксплуатации, давности заливки монолита, возможности коррекции состава смеси, исходных данных и требуемых результатов.

  1. Испытание образцов бетона, которые отливаются в условиях лаборатории – из смеси создают цилиндры и кубики, конусы, потом проверяют с использованием пресса.
  2. Проверка образцов, которые были вырублены/выпилены из уже готового монолита – обычно бурят алмазными коронками, керны отправляют в лабораторию, там определяют прочность с использованием пресса.
  3. Неразрушающие методы – с применением приборов/инструментов, которые позволяют изучить свойства монолита без необходимости помещения их в определенные устройства и условия. Используются ультразвук, ударно-импульсный метод и т.д.

Несмотря на появление множества современных приборов и разнообразных методов, по-прежнему самым эффективным и популярным считается испытание образцов бетона под прессом (на сжатие).

  • Цвет – бетон высокого качества должен быть зеленовато-серого оттенка и чем зеленее, тем лучше (желтый оттенок – признак плохого качества).
  • Появление цементного молочка на поверхности залитого бетона – чем гуще, тем лучше.
  • Непокрытые смесью фракции наполнителя – их не должно быть.
  • От затвердевшего монолита молоток при ударе должен отскакивать со звоном, оставляя небольшую вмятину.

Этапы проведения испытаний

Существует две основных группы методов исследований бетона, которые сегодня используются повсеместно для определения качества материала и соответствия его указанным характеристикам.

Разрушающие методы

Испытания проводятся с применением пресса и исследованием кубиков, цилиндров из бетона, полученных в условиях лаборатории либо выпиленных из уже готового монолита (что может сказаться на прочности всей конструкции). На куски бетона оказывают возрастающее давление, пока не удастся зафиксировать разрушение контрольного образца.

Неразрушающие методы

В данном случае речь идет об исследовании, которое не предполагает какого-либо разрушающего воздействия на образец или повреждения всей конструкции. Прибор взаимодействует с поверхностью монолита механическим способом посредством: отрыва, отрыва со скалыванием, а также скалывания ребра.

Если используется испытание посредством отрыва, на монолит эпоксидным клеем крепят стальной диск, потом отрывают его специальным устройством с фрагментом конструкции. Полученный показатель усилия по формуле переводят в нужную величину.

Когда проводится отрыв со скалыванием, прибор крепят в полость бетона. Лепестковые анкеры вкладывают в пробуренные шпуры, потом достают часть материала и фиксируют разрушающее усилие. Чтобы определить марочные характеристики, используют переводные коэффициенты.

Скалывание ребра используется там, где есть внешние углы (перекрытия, колонны, балки). Прибор (обычно ГПНС-4) крепят к любому выступающему сегменту анкером с дюбелем, нагружают плавно. В момент разрушения происходит фиксация глубины скола и усилия, прочность потом определяют по формуле, которая обязательно учитывает фракцию наполнителя.

Порядок проведения проверки на удобоукладываемость

Чтобы изучить данное свойство бетона, в условиях лаборатории применяют специальный прибор – вискозиметр. Он дает возможность измерить в секундах время, которое нужно для укладки смеси. Укладку начинают и одновременно запускают вискозиметр, потом фиксируют получившиеся показатели. Чем меньше времени нужно для выполнения работ, тем лучше материал.

Порядок проведения испытаний на растяжение

Сначала готовят бетонный конус, его помещают горизонтально в специальный прибор, на средину образца оказывается разрушающая нагрузка по нарастающей. Шаг оказываемого воздействия составляет 0.5 МПа/с. Результат фиксируют после того, как структура бетона разрушилась в центре образца.

Порядок проведения испытаний на сжатие

Благодаря данному методу удается определять марку бетона. Сначала из материала отливают кубики (либо вырезают их из уже залитой смеси) размером 100-300 миллиметров по грани.

Образец помещается под пресс, давящий на кубик с мощностью 140 кгс/м2 с шагом, равным 3.5 кгс/м2. Вектор силы должен быть строго перпендикулярным основанию бетона. По полученным данным определяют способность сопротивления бетона сжатию, марка записывается в протокол испытаний.

Марки прочности бетона и сфера их применения

Бетону присваивают марку по ГОСТу, которая обозначается буквой М и цифрой в соответствии со способностью сопротивления материала на сжатие. И чем больше значение, тем прочнее считается изделие. Как правило, марка прочности зависит от марки и объема цемента в растворе, качества и соотношения компонентов. Бетон бывает марок М100-М500. Есть марки и меньше, и выше, но они редко используются в строительстве.

Бетоны марок М300-М350 применяются для обустройства фундаментов многоэтажных строений, для отливки плит перекрытия, монолитных стен. Наиболее прочные бетоны марок М400-М500 актуальны для производства железобетонных конструкций, которые эксплуатируются в сложных условиях, с повышенными нагрузками.

Испытание бетона – важный и обязательный этап контроля и оценки прочности материала, который лучше всего проводить до начала реализации работ, чтобы не разрушать конструкцию и иметь возможность откорректировать состав, предпринять меры для изменения свойств материала.

Заказывая материал в Москве или регионах, необходимо обязательно требовать сертификаты соответствия с результатами лабораторных проверок.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: