Для чего нужна автоматика для управления приточной системой вентиляции

Автоматизация систем вентиляции

Воздухообмен в помещениях обеспечивает система вентиляции и кондиционирования. Она предназначена для замены и обновления отработанного воздуха с повышенным содержанием углекислоты, влаги и анаэробных микроорганизмов. От стабильной работы автоматики управления, калориферов, циркуляционных насосов и прочего инженерного оборудования приточно-вытяжной системы вентиляции зависит микроклимат в обслуживаемом здании. Чтобы люди комфортно чувствовали себя в жилых домах, офисах, торговых и прочих помещениях, необходимо обеспечить регулярную циркуляцию и очистку воздуха. Использовать проветривание через окна для этих целей непрактично. Открытые створки окон не обеспечивают смену воздуха в достаточной мере для обеспечения санитарно-гигиенических стандартов.

Полный цикл работ по обустройству и автоматизации вентиляционных систем и кондиционирования выполняют специалисты компании «Акрукс». Мы предлагаем:

  1. Проектирование и автоматизация систем вентиляции любого уровня сложности.
  2. Оперативная пусконаладка, обеспечение обслуживания
  3. Разработка проектов для квартир, офисов и многоэтажных зданий любой площади.

У нас вы можете заказать проект автоматизированной вентиляционной системы для дома, бизнес-центра или производственного здания в Санкт-Петербурге.

Зачем нужна автоматизация вентиляции

Автоматизация систем вентиляции воздуха это современное решение для оптимизации расходов на обеспечение инженерных сетей. Для подачи и распределения чистого воздуха внутри здания используются приточная часть вентиляционной системы. Через вытяжной узел происходит отвод отработанного воздуха, который по своим микробиологическим параметрам не удовлетворяет санитарно-гигиеническим стандартам. Баланс в работе вытяжной и приточной частей системы вентиляции и кондиционирования достигается за счет равенства объема воздуха при отводе и отведении. Есть исключения: в помещениях с высокой влажностью, а также там, где нужно избавиться от запахов (кухни общепита, производственные цеха) объем отводимого воздуха превалирует. Для больниц и других заведений, где имеются повышенные требования к уровню очистки воздуха, подача через систему кондиционирования производится интенсивнее.

При проектировании вентиляционной системы в первую очередь необходимо определить кратность воздухообмена. Этот критерий показывает количество циклов обновления воздуха в обслуживаемом помещении. При расчете кратности учитывают следующие факторы:

  1. Сколько людей максимально находится в помещении.
  2. Уровень воздухопотребления при протекании производственных и прочих процессов.
  3. Температура внутри и снаружи здания.

Кратность воздухообмена автоматизированной системы вентиляции иногда устанавливают выше нормативного значения для улучшения санитарно-гигиенических показателей. Чтобы контролировать нормативный уровень воздухообмена и обеспечивать стабильные показатели притока и отвода воздуха, требуется автоматизация вентиляционной системы. Преимущества автоматики управления: Снижение расходов на обслуживающий персонал.

Автоматический запуск и выключение оборудования при внештатных и аварийных событиях. Снижение расхода электроэнергии за счет оптимизации работы.

Благодаря автоматизации удается защитить систему вентиляции от сбоев электропитания, короткого замыкания и температурных перепадов. Также автоматика выполняет ряд других функций:

  1. Отслеживание и предотвращение поломок и сбоев.
  2. Проверка состояния фильтрующих элементов, индикация уровня засорения.
  3. Предотвращение замерзания калорифера путем контроля температуры воздуха до и после нагрева.
  4. Регулировка рабочих показателей системы кондиционирования в соответствии с установленными параметрами.
  5. Подстройка рабочих показателей под изменения внешних условий (влажность, температура воздуха).
  6. Переключение между рабочими режимами в соответствии с таймером для экономии электроэнергии.
  7. Автоматическое обеспечение дымоудаления в случае возникновения пожара.
  8. Обеспечение удаленного контроля работоспособности вентиляции в целом и отдельных ее подсистем.
  9. Расходы на установку автоматики полностью окупаются благодаря повышению эффективности работы вентиляционной системы внутри помещений.

Как работает и из чего состоит система автоматизации вентиляции

Принцип автоматизации общеобменных систем основывается на регулярной проверке температуры, влажности воздуха и других функциональных показателей. Первый уровень контроля обеспечивают датчики, информация с которых попадает в централизованные контроллеры. Сигналы управления поступают от контроллера к исполнительным устройствам после анализа данных. Если температура понизилась, принимается решение о запуске калорифера. Если повысился уровень углекислого газа, запускается система приточной подачи воздуха. Задвижки, клапаны, калориферы, циркуляционные насосы находятся под управлением контроллеров.

Вторичная функция автоматики в системе приточно-вытяжной вентиляции и кондиционирования это проверка исправной работы приборов и устройств. При отклонении показателей оборудования от нормы контроллер сообщает в техническую службу о наличии неисправности. Когда отклонения от нормы достигают критических величин, контроллер принимает решение об отключении системы чтобы не допустить аварийной остановки вентиляции. Комплекс автоматики состоит из датчиков, щитов управления вентиляцией и исполнительных устройств.

Датчики

Автоматизация систем вентиляции и кондиционирования опирается на стабильную работу сенсоров, которые замеряют рабочие параметры среды. Виды датчиков, необходимых для бесперебойной работы системы вентиляции и кондиционирования:

  1. Наружный датчик температуры контролирует температуру воздуха в окружающей среде и отвечает за перевод системы в другой режим (зима/лето).
  2. Датчик температуры обратной воды измеряет температуру воды после теплообменника. Этот прибор служит для защиты калорифера от замерзания.
  3. Термостат защиты калорифера измеряет температуру воздуха после теплообменника.
  4. Канальный датчик температуры приточного воздуха запускает нагрев, если показатели ниже нормы.
  5. Датчики влажности или влагомеры устанавливают в местах, где влияние внешнего воздействия на замеры минимально. Изменения внешней температуры не влияют на показатели влагомеров из-за особенностей цифровой электроники приборов.
  6. Датчики потока с канальным способом монтажа измеряют скорость потока и расход. Такие сенсоры можно устанавливать в трубопроводе круглого или прямоугольного сечения диаметром до 500 мм.
  7. Датчики давления имеют аналоговое или дискретное устройство. Аналоговые датчики позволяют увидеть картину изменения показателя давления во времени, дискретные приборы релейного типа получают величину показателя в конкретный момент времени.
Читайте также:
Встраиваемые водяные внутрипольные конвекторы отопления, конструкция и типы

Для коммутации сенсоров и контроллеров в автоматике управления вентиляцией применяются аналогово-цифровые преобразователи. Они нужны, чтобы электрический сигнал от датчика перевести в цифровой код для контроллера.

Регуляторы и исполнительные устройства

После того как контроллер на основе данных от датчика принял решение об изменении в работе определенного оборудования системы вентиляции и кондиционирования, запускаются исполнительные устройства и механизмы: Частотные преобразователи защищают от перегрузок электродвигатели вентиляторов, регулируют производительность приточно-вытяжной системы, позволяют удаленно регулировать рабочие показатели устройств. Заслонки и клапаны контролируют воздушный поток, используются для перекрытия вентиляционных каналов, обеспечивают отладку работы оборудования.

Регуляторы скорости вращения вентиляторов и температуры служат для управления исполнительными механизмами системы вентиляции и кондиционирования. Регуляторы существуют как самостоятельные элементы, или являются частью автоматики управления.

Щиты автоматики

  1. Комплектация щита управления зависит от устройства системы. Функции щита автоматики:
  2. Включение и выключение оборудования.
  3. Мониторинг состояния приборов и узлов системы, проверка засоренности фильтрующих элементов.
  4. Предотвращение аварийных ситуаций.
  5. Проверка рабочих параметров, отслеживание температуры воздуха до и после теплообменника.
  6. Переключение системы в ручной режим управления.

Рабочие режимы систем вентиляции и кондиционирования

Автоматизированные системы вентиляции и кондиционирования способны работать в нескольких режимах:

  1. Ручное управление. Контроль состояния оборудования производится вручную через щит автоматики.
  2. Автономный автоматический режим согласован с работой других инженерных систем в помещении и не требует вмешательства оператора.
  3. Режим дымоудаления при пожаре. При активации этого режима пресекается подача воздуха к очагу возгорания. Запускается система дымоудаления, которая очищает воздух от продуктов горения.

Подробно об автоматизации вентиляции в здании

Отправим материал на почту

  • Приборы для организации автоматического воздухообмена
  • ЩУВ – для чего он нужен
  • Задачи автоматики для вентиляции зданий
  • Разновидности ЩУВ и ШУПВВ
  • Рекомендации по сборке ЩУВ и ШУПВВ
  • Заключение

Любая вентиляция помещения подразумевает замену воздуха при отсутствии замкнутого цикла, что очень важно не только для создания комфорта, но и с медицинской точки зрения. На сегодняшний день, когда такая потребность стала одной из первых необходимостей функционирования различных организаций, автоматизация систем вентиляции стала необходимым атрибутом любого предприятия. Даже для частного жилья сегодня можно установить систему умного дома, включающую в себя принудительный воздухообмен в помещениях.

Приборы для организации автоматического воздухообмена

Само собой разумеется, что автоматизации вентиляции подразумевает необходимость монтажа каких-то приборов, датчиков и турбин. Такой «освежающий набор» простых и сложных устройств от простого металлического шкафа до модулей с числовым программным управлением предназначен для регулировки состояния воздуха как в помещении в целом, так и в отдельных комнатах. Перевод управленческих функций в поле деятельности компьютеров позволяет обеспечить создание подобных систем на любых объектах закрытого типа с самыми разными характеристиками.

Конечно, условия для автоматизации системы вентиляции будут отличаться друг от друга в зависимости от условий на определенном объекте, а значит, требования тоже будут разными:

  • Места, где можно обойтись общепринятыми модулями в виде шкафов с набором стандартного оборудования.
  • Требования повышены и приходится комплектовать модуль в ручном режиме, ориентируясь на особенности и потребности данного объекта.

Различия в оборудовании модулей системы управления вентиляцией определяются частными характеристиками: назначением объекта и его непосредственной деятельностью, местом его расположения. В любом случае подборка и монтаж оборудования направлен на конечную цель – поддержание воздуха в свежем состоянии на протяжении всего цикла деятельности. Также автоматизация вентиляции направлена на то, чтобы свести к минимуму зависимость от вмешательства оператора (человека) в рабочий процесс и его регулировку.

Система управления приточной вентиляцией осуществляется за счет датчиков, расположенных во всех помещениях обслуживаемого здания. В большинстве случаев, это термостаты, реагирующие на повышение или понижение температуры воздуха. Кроме того, системы оснащаются программным управлением в виде искусственного интеллекта, который сам принимает решение, когда необходима новая порция свежего воздуха.

Сборка таких модулей осуществляется по принципу подбора узлов, которые можно разделить на три основные группы:

  • Датчики – устройства, которые собирают и передают информацию об окружающей среде в компьютерный центр анализа сведений. В этом участвуют термостаты, влагомеры и газоанализаторы разного типа.
  • Центр управления – пункт, куда стекается вся информация с вышеперечисленных контрольно-измерительных приборов. После обработки полученных данных системы автоматического управления вентиляцией выдают команды всем подчиненным механизмам типа фильтров, задвижек, клапанов, двигателей с турбинами.
  • Исполнительные узлы – отвечают за выполнение команд, поступающих на действующие механизмы, от которых зависит вентилирование. Это преобразователи частоты вращения валов двигателей с лопастями крыльчаток, сервоприводы задвижек/заслонок и тому подобное.

Все центры управления приточно-вытяжной вентиляцией производят анализ воздуха в том или ином помещении на его температуру, влажность, соотношение кислорода-углерода и, при необходимости, на наличие других газов. В случае нарушения параметров, заданных по умолчанию, раздаются команды на проветривание помещения (отдельной комнаты или всего объекта). Когда все параметры возвращаются к требуемым нормам (заданным ранее по умолчанию), процесс обмена воздуха блокируется до следующего отклонения от нормы.

Автоматизация различных процессов (вентиляции в том числе) при помощи компьютеров коснулась практически всех видов деятельности homo sapiens современного. Действия оператора в таких случаях сводятся только к заданию режимов или их коррекции и периодической проверке системы на наличие или отсутствие сбоев.

Читайте также:
10 самых покупаемых вещей ИКЕА за всю историю

Примечание: автоматизация систем вентиляции на производстве или предприятии приводит к сокращению необходимости большого штата технических работников разного уровня.

Способы работы воздухообмена, как правило, определяются конкретной ситуацией и конкретным местом потребления и это можно классифицировать по трем режимам:

  • Ручной. Такой режим предусмотрен для самых разных ситуаций (в основном экстраординарных) – здесь все команды раздаются оператором удаленно через пульт управления.
  • Автономный. Все компьютеризированные блоки раздают команды на обслуживающие механизмы вне зависимости от работы сопряженных инженерных систем, функционирующих в здании.
  • Автоматический. Вся сеть управления воздухообменом интегрирована в систему общей регулировки всех инженерных комплексов данного здания. Это означает, что автоматические системы управления вентиляцией синхронизированы с прочими системами безопасности, как пожарная сигнализация, газоанализаторы для котлов отопления и прочими аварийными датчиками.

Подводя итоги можно сказать, что при автоматизации вентиляционных систем функции оператора сводятся к банальному пассивному наблюдению с минимализацией личного присутствия. Но, следует сказать, что без участия человека, хотя бы на уровне наблюдателя невозможен не один автоматический процесс, даже если ним управляют самые современные компьютеры.

Видео описание

Быстрая автоматизация вентиляции с ТРМ1033 и TRACE MODE.

ЩУВ – для чего он нужен

Для включения или выключения сплит системы (кондиционирование воздуха) или запуска турбины в вентиляционной шахте не нужно компьютерное управление – с этим без труда справится любой человек, ощутив состояние дискомфорта по отношению к окружающей среде. Но такое возможно не всегда: на больших предприятиях, в крупных организациях, торговых центрах, спортивных комплексах и т.д. такими вещами гораздо удобнее командовать с одного места при помощи пульта управления. Более того, когда ручной ПУ заменяет ЧПУ, установленное на компьютере, все происходит совсем по-другому.

Вся информация с каждого двигателя с нагнетающей или высасывающей турбиной, обогревателя любого типа, кондиционера или сплиттера поступает на компьютер общего центра ЩУВ. В этом же шкафу находятся и автоматы, непосредственно запускающие или блокирующие ту или иную систему. В современном исполнении ЩУВ может выглядеть, как открытая панель с индикаторами, регуляторами, тумблерами и кнопками либо, как навесной или напольный металлический шкаф с распашными дверями и навесным либо внутренним замком для защиты от постороннего вмешательства.

В чем заключается основной функционал ЩУВ:

  • постоянный контроль всех приборов в системе вентиляции и кондиционирования данного здания;
  • защита двигателей и отопительных систем от перегрева, блокировка системы в случае короткого замыкания в схеме цепи;
  • управление мощностями и производительностью оборудования;
  • программирование системы в целом либо отдельных блоков (задается оператором) для запуска или блокировки агрегатов по временным промежуткам (часы, дни);
  • обеспечение индикации всех приборов на ПУ;
  • поддержание установленной по умолчанию температуры воздуха путем кондиционирования и/или вентиляции;
  • контроль над воздуховодами и состоянием воздушных фильтров по степени их загрязнения;
  • предупреждение сбоев и неисправностей блоков, например, системы водяного отопления могут замерзнуть при наступлении заморозков.

Монтаж таких щитов (в основном, закрытых) в помещении различных предприятий, торговых центров, спортивных комплексов и жилых домов дает возможность обслуживающему персоналу следить за работой всего оборудования с одного места. Для удобства в таких щитовых шкафах также размещают индикаторы для устройств защиты от пожара и отопления, а также их могут подключать к общей системе контроля.

ШУПВВ по своей сути ни что иное, как ЩУВ (щит управления вентиляцией), только с запертой на замок распашной дверью. Их могут устанавливать либо на каждом этаже, в каждом цеху или торговом зале, либо в одном месте для управления оборудованием всего здания в целом. При пожаре или несанкционированной остановке вентиляционного оборудования в ШУПВВ срабатывает сигнал, оповещающий о необходимости предпринять какие-либо действия в ручном режиме, либо они включаются автоматически.

Видео описание

Автоматика систем вентиляции и центрального кондиционирования воздуха.

Задачи автоматики для вентиляции зданий

Сегодня на любом современном предприятии есть множество приборов и узлов для управления приточной вентиляцией и набор их функций порой не просто помогает, но даже может спасать здоровье и человеческие жизни. ПУ модуля ШУПВВ или ЩУВ оснащаются элементами электронного интеллекта для следующих действий:

  • постоянное поддержание микроклимата помещения в заданном режиме (температура, влажность, загазованность);
  • возможность дистанционного управления тем или иным блоком (запуск/блокировка, смена режима) удаленно (оператором при помощи ПУ);
  • автоматически переход оборудования на другой режим при смене сезона (зима – лето);
  • контроль всех фильтров на уровень загрязнение и автоматическая подача сигнала о необходимости их очистки/замены;
  • автоматическое управление приточной вентиляцией при помощи заслонок;
  • блокировка притока воздуха при срабатывании пожарных датчиков безопасности;
  • отключение электропитания при возникновении скачков напряжения.

Примечание: подробный перечень всех функций, которыми снабжена система управления вентиляцией, нужно узнавать у продавца или у производителя, так как они могут отличаться.

Видео описание

Автоматизация систем вентиляции и кондиционирования.

Разновидности ЩУВ и ШУПВВ

Современный рынок электрооборудования предлагает широкий выбор самых разных ЩУВ и ШУПВВ, классифицируя их по размерам и по категориям. Все модификации можно разделить, как минимум, на четыре пункта:

  • Оборудование для проветривания и удаления задымленности в помещениях. Такой климат-контроль нужен на производстве, например, для обустройства рабочего места сварщика или в кузне.
  • ЩУ, контролирующие запуск, остановку и частоту вращения (мощность) систем вентиляции. Как правило, устройства такого типа имеют обширный функционал и могут устанавливаться как в подвесных, так и напольных шкафах управления. Возможна работа с фреонными установками, водяными калориферами и управление приточной вентиляцией.
  • ЩУ электроснабжением приточно-вытяжной вентиляции. Сюда включается рекуператор для поддержания заданной температуры входящих и выходящих газовых потоков. Существуют также модификации, на основе гликоля (CₙH₂ₙ(OH)₂), где в системе теплоснабжения применяется циркуляция незамерзающих жидкостей типа антифриза. Сюда также входит циркуляционный насос и автоблокировка от неконтролируемых температурных перепадов.
  • Модель с использованием обычного рекуператора рассматривается, как ЩУ приточной вентиляцией. Его легко перевести в любой режим. Сам рекуператор здесь выполнен в виде оцинкованного стального куба (квадратного или прямоугольного) с четырьмя патрубками – по два с каждой стороны. К ним подсоединяются металлические или пластиковые воздуховоды.
Читайте также:
Вейгела. Самые популярные сорта и осенний уход за ней

Рекомендации по сборке ЩУВ и ШУПВВ

В любом случае все работы по сборке и установке ЩУВ и ШУПВВ должны производится квалифицированными специалистами с соблюдением ТУ 3431-001-67762877-2013 и ТУ 4371-001-67762877-2016. Самостоятельный монтаж и сборка устройств управления категорически запрещена. Корпусы щитов или шкафов тоже нельзя изготавливать по собственному усмотрению – их заказывают в соответствии с предполагаемым оборудованием. В тех случаях, когда не хватает каких-то проводов, креплений или тумблеров (такое часто случается) их замена должна в точности соответствовать заданным техническим характеристикам.

К комплектации всех ЩУВ и ШУПВВ заводом-изготовителем всегда прилагается монтажная схема, которой будет руководствоваться специалист при сборке. Но её сохраняют на предприятии на случай необходимости проведения каких-либо ремонтных работ.

Видео описание

Щит автоматики поддержание постоянного расхода воздуха.

Заключение

В заключение можно сказать, что на сегодняшний день автоматизация вентиляции уже давно не является каким-то новшеством и в большинстве случаев, это обязательное условие для запуска того или иного предприятия (цеха). Кроме того, такое устройство постепенно захватывает не только промышленную, но и бытовую сферу – оно входит в систему «умного дома».

Автоматизация приточной вентиляции

Система приточной вентиляции – техническая система, главная функция которой – обеспечение в течение заданного времени качественного состава воздуха в определенных точках помещения здания/сооружения путем забора и транспортировки к ним атмосферного воздуха в достаточном объеме из окружающей среды.

Избыточный воздух, закачанный приточной вентиляцией из помещений может удаляться:

  • пассивным способом – за счет естественным оттока воздуха при избыточном давлении через двери, окна, вентиляционные отверстия/каналы, (энергоэффективность такого решения – нулевая);
  • активным способом – за счет принудительного отбора воздуха из помещения (энергоэффективность такого решения определяется степенью рекуперации энергии, затраченной на нагрев или охлаждение воздуха.)

Базовыми элементами системы приточной вентиляции являются:

  • система забора атмосферного воздуха – вентилятора с электрическим приводом (забор и нагнетание его в систему подготовки воздуха и распределения);
  • воздушные клапаны (перекрывает возможность циркуляции воздуха в системе приточной вентиляции при её отключении).

В зависимости от задач и масштабов системы приточной вентиляции, в неё также могут следующие системы:

  • очистки воздуха;
  • кондиционирования воздуха (нагрев, охлаждение);
  • увлажнения воздуха;
  • воздуховодов (обеспечивают транспортировку поступающего воздуха в пространстве здания);
  • нагнетательных вентиляторов в системе воздухопроводов (для компенсация потерь давления и скорости движения воздушного потока в воздуховоде);
  • шумоподавления.

В некоторых случаях система вытяжной вентиляции, как и система приточной вентиляции, оборудуется системой очистки воздуха, например при удалении воздуха из зоны приготовления пищи в кафе и ресторанах, устанавливаются системы очистки воздуха от жира.Для предотвращения потерь тепла через входы/выходы здания в холодное время года устанавливаются тепловые завесы.

Преимущества автоматизации приточной вентиляции

Автоматизация общеобменной вентиляции дает следующие положительные эффекты:

  • Экономия ресурсов:
    • За счет работы по расписанию;
    • За счет точности ПИД-регулирования режимов работы оборудования;
    • За счет поддержания оптимального теплового режима теплообменника в системе подогрева воздуха в зимнее время: в нерабочие дни – минимизируется расход тепла и не допускается замораживания теплообменника.
  • Поддерживать индивидуальные климатические режимы в выделенных зонах.
  • Осуществлять поэтажное регулирование температурных режимов в здании.
  • Осуществлять пофасадное регулирование температурных режимов в различных зонах здания при неравномерном внешнем нагреве или охлаждении здания;
  • В дежурном режиме (режиме экономии) обеспечивать заданные климатические условия в подсобных помещениях.
  • Обеспечение оптимальных режимов по обратной воде для систем подогрева воздуха от тепла, получаемого от теплоцентрали позволяет исключить штрафные санкции за нарушение температурных режимов обратной воды.
  • Снижение затрат на содержание персонала (за счет снижения трудоемкости обслуживания системы вентиляции.

Система автоматического управления вентиляцией также может управлять сетью сплит-систем некоторых производителей локально установленных в здании и имеющих стандартные порты для соответствующего удаленного управления, например по протоколу Modbus.

Контроллеры для автоматизации приточной вентиляции

При определенном пороге сложности требований к системе приточной, вытяжной, или приточно-вытяжной вентиляции для её автоматизации оптимальным решением применение программируемых контроллеров. Из линейки программируемых контроллеров Контар для решения этих задач рекомендуются следующие приборы:

  • Программируемые контроллеры – MС8, MС12,
  • Модуль расширения (модуль ввода-вывода) – MА8 .

Характеристики контроллеров для автоматизации приточной вентиляции

Для систем приточной и приточно-вытяжной вентиляции МЗТА предлагает библиотеку алгоритмов. Если в ней отсутствуют подходящие алгоритмы, то их можно разработать самостоятельно. Разработка алгоритмов осуществляется в специальной среде КОНГРАФ, а затем с помощью программного инструмента КОНСОЛЬ загружаются в программируемый контроллер.

  • датчики (в скобках указаны рекомендуемые для типовых проектов) :
    • температуры (наружного воздуха, Pt 1000,-50+90°С Regeltechnik ATF-1),
    • температуры воздуха (канальный, Pt1000,-50+90°С; 50, 100, 150, 200, 250, 300, 400 мм, TF65T (TF65) + присоединительные фланцы для канального датчика температуры MF-15-K);
    • температуры по тепло- или хладоносителю (накладной, вкл. хомут, Pt 1000,-35+105°С, RegeltechnikALTF1 (ALTF2);
    • давления (PREMASGARD® 1110 ),
    • влажности (Regeltechnik, KFTF-U ),
    • СО2 – для подземных паркингов (Regeltechnik, RLQ (RLA-A));
  • органы управления для подачи команд в ручном режиме;
  • средства визуализации режимов работы объекта;
  • исполнительные устройства:
    • маломощные (приводы для воздушных заслонок Belimo);
    • мощные (вентиляторы).
Читайте также:
Интерьерные куклы. Шьем своими руками

Целесообразность применения программируемого контроллера MС8, MС12, или их комбинации, и/или дополнения модулями расширения MА8, зависит от:

  • функциональных элементов управления, применяемых в техническом решении;
  • особенностей объекта вентиляции:
    • вентилируемой площади,
    • этажности,
    • пространственной конфигурации расположения воздуховодов;
    • наличия специальных зон с особыми режимами вентиляции.

В Таблице 1 указаны выходы программируемых контроллеров, а в Таблице 2 – выходы модулей расширения, которые используются для управления исполнительными устройствами в контуре управления приточной вентиляции.

Автоматика для управления системой вентиляции

Автоматизация технических процессов сегодня коснулась практически всех областей человеческой деятельности, как на производстве, так и в быту. Не стали исключением и вентиляционные системы, для управления которыми разработаны специальные устройства, позволяющие максимально оптимизировать их работу.

Что такое автоматика для вентиляционных систем

Сегодня автоматические системы управления вентиляцией представлены большим комплексом всевозможных технических приборов. Все они, начиная от термостатов, и заканчивая сложными компьютеризированными модулями, предназначаются для облегчения управления и контроля над работой принудительных вентиляционных систем. Разнообразие оборудования даёт возможность решения задач по обеспечению автоматизации на любом объекте, вне зависимости от его характеристик и назначения.

Исходя из эксплуатационно-технических требований, возможен различный подход к изготовлению пультов автоматизированного управления вентиляцией:

  • На одних объектах можно обойтись стандартными модулями, выпускаемыми в виде шкафов с установленными в них приборами управления.
  • В других случаях монтажникам приходится вручную собирать комплексы, адаптированные под сложные приточно-вытяжные вентиляции с учетом конкретных задач.

Разница в подходах обусловлена необходимостью обеспечить эффективное функционирование вентиляции и созданием комфортных условий для жильцов или работников во внутренних помещениях здания, вне зависимости от времени года и внешних погодных условий.

Важно! В больших торгово-развлекательных комплексах, в учебных и административных зданиях, на больших производствах установка оборудования для автоматизации вентиляционных систем позволяет устранить возможные сбои в работе и минимизировать влияние человеческого фактора.

Управление работой вентиляционных механизмов происходит с помощью комплекса датчиков, установленных внутри помещений. Одни из них действуют по принципу термостата – с повышением температуры внутри здания автоматически включаются вентиляторы, чем обеспечивается приток свежего воздуха.

Современные автоматизированные системы оснащаются элементами искусственного интеллекта и более сложными контрольно-измерительными приборами.

Конструктивно подобные модули состоят из трех групп узлов:

  • Датчики – приборы, передающие информацию об окружающей среде – термостаты, измерители влажности воздуха, газоанализаторы. Собранные данные они передают в анализирующий центр.
  • Центр управления собирает и обрабатывает информацию, поступающую от контрольных датчиков, и на основании полученного анализа выдает команды механизмам управления на изменения режима работы.
  • Исполнительные механизмы – узлы, осуществляющие механические действия. К этой группе относятся: преобразователь частоты вращения вентилятора, сервоприводы для регулировки положения задвижек и т.д.

Центры управления анализируют соотношение в воздухе кислорода и углекислого газа, процент влажности, при необходимости выдавая команду проветрить помещение. При обнаружении возгорания высокоинтеллектуальная электроника самостоятельно блокирует приток свежего воздуха, препятствуя распространению пожара.

В обычном режиме автоматика обеспечивает слаженное функционирование всех узлов и механизмов вентиляционных систем без привлечения оператора.

Компьютеризированные модули передают информацию о режиме работы, о показаниях датчиков на единый пульт управления. Это позволяет оператору, при необходимости, корректировать работу автоматики, и менять настройки в удаленном режиме.

Обратите внимание! Благодаря использованию автоматики контролировать работу и заниматься обслуживанием вентиляции с установленной автоматикой, может гораздо меньшее количество технических специалистов.

В зависимости от конкретной ситуации, используется один из 3-х режимов управления приборами:

  • Ручной. Управление вентиляцией осуществляет оператор, находящийся непосредственно в щитовой комнате, либо за удалённым пультом управления.
  • Автономный. Аппаратура работает в соответствии с установленными настройками, вне зависимости от прочих инженерных систем, установленных в здании.
  • Автоматический. Приборы управления интегрированы в общее управление всеми инженерными комплексами здания. Работа вентиляции синхронизирована с прочими приборами и датчиками, расположенными в доме – например, с пожарной сигнализацией, иными аварийными датчиками.

Таким образом, автоматизированный комплекс исполняет роль управляющего контрольного центра. Он запускает вентиляцию в работу, останавливает её, обрабатывает показания датчиков и устанавливает нужный режим в зависимости от температуры, влажности и прочих параметров.

Основные задачи автоматики для вентиляции

Поскольку на современном рынке представлено большое количество всевозможных технических устройств для автоматизации вентиляции, набор их функций также чрезвычайно широк.

Основные функции модуля управления, оснащенного элементами электронного интеллекта:

  • Поддержание заданных параметров микроклимата внутренних помещений – температуры и влажности воздуха, насыщенности углекислым газом и т.д.
  • Возможность для оператора удаленного управления вентиляторами, дистанционного их включения и отключения.
  • Осуществление автоматизированного контроля над датчиками работы всех узлов и агрегатов вентиляционного оборудования.
  • Самостоятельный перевод оборудования в летний или зимний режим.
  • Контроль над уровнем загрязнения фильтрующих устройств с функцией подачи сигнала о необходимости прочистки.
  • Открывание и закрывание заслонок воздуховодов, регулировка производительности приточных и вытяжных вентиляторов.
  • Прекращение подачи свежего воздуха при срабатывании пожарной сигнализации.
  • Отключение электропитания при аварийных ситуациях – резких скачках или понижении напряжения. Это позволяет предотвратить выход из строя приборов, датчиков и отдельных узлов вентиляционной системы.

Обратите внимание! Точный перечень функций, которыми снабжен тот или иной автоматизированный модуль, следует узнавать у продавца или производителя.

Дополнительные функции

Современные производители для максимально полного удовлетворения запросов покупателей, уделяют особое внимание не только надежности выпускаемого оборудования. Немаловажным фактором в конкурентной борьбе за потребителя является оснащение продукции как можно большим дополнительным функционалом.

Читайте также:
Водосток на плоской кровле: правила установки

Сегодня стали доступны такие высокоинтеллектуальные функции, как:

  • Подключение вентиляции к единому электронному диспетчеру управления «умный дом».
  • Управление настройками через интернет-приложения, при помощи Wi-Fi и блютуз.

Оснащенная современным функционалом автоматическая аппаратура становится понятной и простой в управлении, подобно прочей бытовой технике.

Как выбрать и установить

При выборе аппаратуры управления вентиляционными устройствами, особое внимание следует уделить эксплуатационно-техническим характеристикам.

Важную роль при правильном подборе техники играют сложность системы вентиляционных ходов, количество помещений и их внутренние объемы, а также количество людей, которые находятся в помещении.

Следует отдавать предпочтение продукции компаний, зарекомендовавших себя на рынке электроники.

При этом важно узнать, каковы гарантийные обязательства, предусмотрено ли бесплатное сервисное обслуживание. Чем выше уровень качества аппаратуры, тем выше ее стоимость. Однако, не стоит жалеть денег на качественную технику, поскольку она окупит все расходы многолетней безаварийной службой. Идеальным вариантом будет найти такой электронный модуль управления, который совмещал в себе качество сборки, большое количество функций и доступную стоимость. Как показывает практика, подобная аппаратура сегодня встречается среди продукции новых компаний, только выходящих на мировой рынок.

Это важно! Установкой и подключением систем автоматизации вентиляций должны заниматься только техники со специальными допусками.

Прошедшие необходимую подготовку специалисты устанавливают аппаратуру в полном соответствии с требованиями технического регламента.

При самостоятельном подключении возможны ошибки, способные привести к выходу из строя, как отдельных узлов, так и всего оборудования. Также самостоятельно смонтированные комплексы управления не подлежат сервисному обслуживанию, и при поломке покупателю придется ремонтировать их за свой счет.

Автоматизация приточно-вытяжных систем вентиляции

2020-11-21 Промышленное 11 комментариев

Разработка, внедрение приточно-вытяжных систем вентиляции является одной из самых востребованных задач в современной автоматизации. Сложно представить современные торговый центр, жилой комплекс или производство без инженерных систем вентиляции, а сами вентиляционные системы без системы автоматики.

Вот об этом мы сегодня и поговорим, акцентируя внимание в первую очередь на автоматизацию данного процесса, но также рассмотрим устройство систем вентиляции и особенности их управления.

Приточно-вытяжная вентиляция представляет собой совокупность устройств, направленных на создание оптимальных параметров воздуха в помещении, согласно нормативным документам, путем постоянного притока свежего воздуха, а так же удалении отработанного воздуха. В частности, регламентируется чистота воздуха в помещении, согласно ГОСТ 12.1.005-88 (Общие санитарно-гигиенические требования к воздуху рабочей зоны), уровень шума в помещениях СНиП 23-03-2003 (Защита от шума), минимальный расход свежего воздуха на одного человека, температура, влажность воздуха СНиП 41-01-2003 (Отопление, вентиляция и кондиционирование).

Вентиляция, в зависимости от назначения, может быть только приточной, осуществляющей подачу очищенного свежего воздуха заданной температуры и влажности, только вытяжной, осуществляющей удаление воздух из помещения с помощью вытяжных вентиляторов, либо смешанной. В зависимости от зоны обслуживания — общеобменная и местная.

В зависимости от технических условий, состав вентиляционной системы может видоизменяться — с использованием либо без использования рекуперации воздуха, при использовании рекуператоры могут быть пластинчатого, либо роторного типа, для нагрева воздуха могут применяться водяной либо электрокалориферы, использоваться резервирование системы, путем установки дополнительных вентиляторов,либо без резервирования. Но в целом общий принцип работы вентустановки остается неизменным.

Приточный воздух подается в систему воздуховодов, пройдя предварительную фильтрацию, нагрев, либо охлаждение, в зависимости от температуры наружнего воздуха. Нагрев воздуха производится горячей водой или с помощью электричества, в зависимости от комплектации приточной системы. Охлаждение воздуха в летнее время производится с помощью водяного теплообменника, либо фреонового охладителя, расположенных в холодной секции вентустановки, в случае если она предусмотрена проектом. После этого очищенный воздух подается в помещения в необходимом объеме. В это же время отработанный воздух удаляется из помещений на улицу в таком же объеме. Оба потока воздуха циркулируют в системе одновременно, но при этом нигде не смешиваются.

Основные элементы приточной системы

Типовая система вентиляции состоит из различных элементов, одни из которых являются обязательными для установки, без них не будет корректной работы, другие опциональны, их наличие определяется техническими условиями.

Понятно, что любая система должна иметь в своем составе воздуховоды, шумоглушители, воздушные клапаны, воздухозаборные решетки и т.д. но мы рассмотрим только те элементы, которые так или иначе задействованы в системе автоматизации.

Ниже представлена типичная функциональная схема приточной вентиляции с водяным калорифером без рекуперации.

На данной схеме изображены следующие элементы:

Читайте также:
Белые обои с черным рисунком, узором, цветами + фото

1 — Датчик температуры наружний

Предназначен для измерения температуры окружающей среды. По данному датчику система автоматики осуществляет переход зима/лето.

В основном используются уличные датчики, представляющие собой термосопротивление Pt1000, Pt100, либо на основе термисторов NTC10k, NTC20k.

2 — Воздушная заслонка с электроприводом (жалюзи)

Используется для открытия/закрытия вентиляционных каналов и регулирования объёма подачи воздуха. При отключении вентустановки, например при наладке, заслонка препятствуют проникновению в систему холодного воздуха.

Зачастую заслонки оснащаются системой обогрева в виде нагревательных элементов, либо греющего кабеля, хотя на вышеприведенной схеме данная функция отсутствует.

Приводы воздушных заслонок различаются по типу управляющего сигнала — двухпозиционный (открыть/закрыть), трехпозиционный и аналоговый 0-10V. Соответственно от типа провода меняются и функциональные возможности заслонок.

Двухпозиционный привод типа открыть/закрыть используется только для полного открытия либо закрытия жалюзей, никаких промежуточных положений не предусмотрено.

В случае, если необходимо регулирование расхода воздуха, применяются аналоговые или трехпозиционные привода. При использовании аналогового привода, створки заслонки открываются в зависимости от напряжения управляющего сигнала 0-10V.

Трехпозиционные привода имеют три состояния — открыть, закрыть и останов. Изменение положения происходит прямо пропорционально длительности импульса электрического сигнала. При отсутствии сигнала привод останавливается, при подаче сигнала на один контакт привод открывается (закрывается), при замыкании второго контакта привод закрывается (открывается). Помимо этого, могут быть задействованы вспомогательные контакты. На рисунке ниже показана схема подключения трехпозиционного привода.

3- Фильтр

Воздушный фильтр служит для защиты от попадания в систему различных частиц пыли и других примесей.

4 – Реле перепада давления на фильтре

Измеряет разность давления воздуха до и после фильтра. В случае выхода перепада давления за пределы порога срабатывания (уставки) контакты реле переключаются и сигнал о необходимости замены фильтрующего элемента поступает в систему управления. При этом установка продолжает работу в штатном режиме.

5 — Водяной калорифер

Служит для подогрева поступаемого в помещения наружнего воздуха. Представляет собой теплообменник с медными либо стальными трубками, по которым проходит горячая вода из системы отопления здания.

6 — Циркуляционный насос

Обеспечивает циркуляцию теплоносителя в калорифере. При работе калорифера должна осуществляться постоянная работа насоса, даже в дежурном режиме. В летний период, во время останова системы, насос выключен, но при этом системой автоматики предусмотрен запуск насоса раз в сутки на непродолжительное время во избежание закисания ротора насоса.

Для защиты насоса от работы на сухом ходу может применяться термореле, блокирующее его работу при понижении температуры воды на входе в калорифер.

7 — Трехходовой запорно-регулирующий клапан с приводом

Регулирующие клапаны предназначены для плавного регулирования количества теплоносителя, поступающего в калорифер, при необходимости часть потока воды проходит через байпас. В зависимости от температуры приточного воздуха, либо температуры обратной воды, регулирующий клапан повышает, либо уменьшает поступление обратной воды в теплообменник.

Регулировка осуществляется управляющими сигналами 0-10V либо 4-20мА.

8 — Датчик температуры обратной воды

Применяется для контроля температуры на выходе теплообменника, что обеспечивает дополнительную защиту водяного калорифера от замерзания.

9 — Термостат защиты калорифера от замораживания

Термостат является основной защитой калорифера от заморозки. Контролирует температуру воздуха после теплообменника и в случае понижения температуры ниже уставки (примерно 5-6 °C) выдает сигнал в щит управления вентустановкой.

Измерение температуры производится при помощи чувствительного элемента в виде газонаполненной капиллярной трубки, при этом необходимо уделить внимание ее правильному монтажу, в частности минимальный радиус изгиба капилляра должен быть примерно 20 мм, трубка должна монтироваться равномерно по всей площади теплообменника.

10 — Вентилятор

Обеспечивает направленное движение воздушного потока по воздуховодам. Управление скоростью вращения вентилятора осуществляется частотным преобразователем.

В основном применяют вентиляторы осевого и радиального (центробежные) типов с асинхронными электродвигателями, которые соединяются между собой через ременную передачу, либо вентиляторы непосредственно крепятся на вал двигателя. Управление вращением осуществляется при помощи частотных преобразователей.

В последнее время набирают популярность ЕС (Electronically Commutated — электронно коммутируемые) вентиляторы на основе бесколлекторных синхронных двигателей со встроенным электронным управлением. Вращение ротора ЕС-двигателя осуществляется за счет подачи питания на обмотку статора в зависимости от положения ротора.

Для определения положения ротора применяются датчики Холла. Также регулирование может осуществляться от внешних датчиков при помощи унифицированных сигналов 4-20 мА или 0-10 В.

11 — Реле перепада давления на вентиляторе

Контролирует перепад давления и в случае неисправности самого вентилятора или обрыва ремня привода выдает сигнал на управляющий контроллер. Происходит останов системы в аварийном режиме.

При монтаже реле перепада есть один нюанс. Если прессостат используется на фильтре,то трубка со штуцером с маркировкой + подключается перед фильтром, а с маркировкой — после фильтра. На вентиляторе, наоборот, штуцер + подключается после вентилятора, штуцер — перед вентилятором. В случае применения систем с рекуперацией, штуцер + подключается перед рекуператором, штуцер — после рекуператора, ориентируясь по движению воздуха.

12 — Канальный датчик температуры приточного воздуха

Осуществляет контроль температуры приточного воздуха. По показаниям датчика температуры притока происходит управление нагревом вентустановки.

Система автоматики приточной вентиляции

Управление работой вентиляционной установкой производится контроллером, находящимся в щите управления и обеспечивающим автоматическое поддержание температуры приточного воздуха по заданной уставке.

На контроллер приходят основные сигналы с установки — значение с датчика температуры наружнего воздуха, сигнал открытия приточной заслонки, температура воды до и после калорифера, положение и сигнал обратной связи привода клапана калорифера водяного нагрева, сигнал о состоянии насоса, состояние вентиляторов и их скорость вращения в процентном соотношении от максимального.

Читайте также:
Как и чем отстирать пятна от ягод: простые способы

В зависимости от полученных данных автоматика осуществляет управление исполнительными устройствами — регулирование температуры воздуха в приточном воздуховоде, управление приводом воздушной заслонки, управление циркуляционным насосом нагревателя , управление приводом регулирующего вентиля нагревателя, управление скоростью вентиляторов с помощью частотных преобразователей.

Система автоматики помимо температурных режимов должна обеспечивать:

  • Защиту калориферов от заморозки
  • Автоматическое отключение систем при аварийных ситуациях
  • Ручнойавтоматический режимы работы
  • Отображение рабочих и аварийных параметров системы
  • Ручное и автоматическое переключение режимов работы «Зима-Лето»
  • Формирование аварийных сигналов и сохранение архива аварийных сообщений
  • Возможность передачи данных в систему верхнего уровня
  • Задание режимов работы
  • Индикацию статуса работы системы на лицевой панели щита с помощью индикаторных ламп
  • Контроль силовой цепи

Общий алгоритм управления работой вентиляционной системы следующий:

Переход в автоматический режим производится переключателем на двери щита управления. Система автоматически по датчику температуры переходит в режим Зима/Лето в зависимости от температуры воздуха на улице. Режим Лето включается при температуре 11-13 °С, при понижении температуры до 8 °С осуществляется переход в режим Зима.

При запуске системы в режиме Зима воздушный клапан закрыт, вентилятор приточной установки выключен, трехходовой клапан открыт на 100%, циркуляционный насос работает постоянно, пока в работе водяной калорифер (в том числе и в дежурном режиме). Водяной калорифер должен прогреться до заданной температуры, определяемой по датчику обратной воды теплоносителя.

После прогрева калорифера поступает команда на запуск вентустановки. При этом вентиляторы не включаются, идет открытие воздушного клапана. Одновременно с началом открытия клапана начинается отсчет задержки перед запуском приточного вентилятора. После запуска вентилятора происходит регулирование температуры воздуха в приточном канале при помощи ПИД-регулятора. Управление нагревом вентиляционной установки осуществляется по датчику температуры в приточном воздуховоде.

При включении режима работы Лето воздушный клапан закрыт, вентилятор приточно установки выключен, циркуляционный насос не работает. При пуске системы, также как и режиме Зима, открывается воздушный клапан и одновременно, с задержкой подается команда на включение вентилятора.

При возникновении угрозы заморозки водяного нагревателя алгоритм работы системы автоматики следующий — вентилятор останавливается, воздушная заслонка закрывается, регулирующий клапан теплоносителя открывается на 100%, в журнал событий заносится аварийное сообщение об угрозе заморозки. Также в журнал заносится расшифровка аварийного сигнала, что конкретно послужило причиной аварийной ситуации (термостат, низкая температура обратной воды, низкая температура притока).

Для вентиляторов предусмотрены следующие виды аварийных сигналов:

  • cигнал о перегрузки электродвигателя, по срабатыванию встроенного термоконтакта.
  • сигнал об аварии с преобразователя частоты, при этом контроль электрических параметров электродвигателя осуществляется встроенными функциями самого частотного преобразователя, При поступлении данного сигнала установка переходит в дежурный режим, снимается сигнал подачи питания на преобразователь частоты, аварийное сообщение заносится в журнал событий. В системах, где используется резервирование вентиляторов вместо перехода в дежурный режим включается резервный вентилятор.
  • сигнал «обрыв ремня» по срабатыванию датчика перепада давления на вентиляторе.

При поступлении сигнала аварии насоса с термоконтакта или при размыкании дополнительного контакта автоматического выключателя насос выключается, вентустановка переходит в дежурный режим и в журнал контроллера записывается данное событие.

Управление и контроль за системой вентиляции могут осуществляться удаленно в систему диспетчеризации здания, куда передаются все необходимые сигналы с контроллера.

Также в щит управления вентиляцией могут приходить сигналы с системы пожарной сигнализации. При срабатывании сигнала о пожаре приток свежего воздуха в помещение должен прекращаться, поэтому вентиляционная установка должна останавливаться, переходя в дежурный режим.

Конечно, данное описание алгоритма работы обобщенное, не рассмотрены некоторые важные моменты при работе, но наверное лучше это рассмотреть в будущем на примере реальной программы управления вентустановкой.

В завершении хочется отметить, что данная тема является очень объемной и в рамках одной статьи невозможно рассказать о всех аспектах работы вентиляционных систем, поэтому в дальнейшем мы еще вернемся к данной тематике.

Для чего нужна автоматика для управления приточной системой вентиляции

Автоматическое управление вентиляционными системами оптимизирует их работу. Особенное значение автоматика для вентиляции имеет при возведении больших зданий. Здесь вентиляционные конструкции расположены на больших площадях, и проконтролировать в ручном режиме работу всего оборудования проблематично. Важно правильно настроить автоматическую систему. Это будет гарантией её качественной работы и облегчит управление приборами.

  • 1. Основные задачи автоматики
  • 2. Режим работы
  • 3. Узлы системы
    • 3.1. Сенсорные датчики
    • 3.2. Регуляторы оборотов и частотные преобразователи

    Конструкция современных систем вентиляции устроена достаточно сложно. Она состоит из множества приборов, каждый из которых имеет своё назначение в обеспечении функционирования системы. Чтобы работа приборов была качественной, её нужно контролировать, добиваясь согласования действий всех агрегатов. Для этого и создана автоматика приточной вентиляции. Она значительно облегчает работу с системой и обеспечивает слаженную работу приборов без непосредственного участия человека.

    Контроль над работой механизмов осуществляется установленными на них специальными датчиками. Это позволяет оператору управлять системой удалённо с единого центра, не контактируя с каждым прибором непосредственно.

    Комплекс датчиков собирает информацию с вентиляционных механизмов и передаёт её на монитор центра управления. Здесь она анализируется специалистом, после чего в случае серьёзных неполадок производится коррекция рабочего процесса.

    Если необходимо, система самостоятельно может осуществлять подключение дополнительных агрегатов и контрольных приборов для оптимизации рабочего режима. Это может понадобиться при изменениях погоды, что может привести к повышенной нагрузке на механизмы, из-за чего последние могут выйти из строя.

    При аварийной ситуации автоматика сама отключит приборы от электропитания.

    Автоматика системы вентиляции оптимизирует работу комплекса, уменьшает количество обслуживающего персонала до 1—2 человек. Благодаря этому снижаются расходы на оплату труда дополнительных работников.

    Центром управления приточной вентиляции является щитовая. Щит обеспечивает три режима её функциональности:

    • ручной;
    • автоматический автономный;
    • автоматический.

    Первый вариант подразумевает ручной контроль над системой. Осуществляется он оператором, дежурящим в щитовой.

    Во втором случае запуск и остановка вентиляции, а также передача функциональных данных осуществляется независимо от показаний, собранных от смежных инженерных систем. Сведения о работе получает диспетчер.

    В полностью автоматическом режимевентиляция включена в общее автоматизированное управление, которое синхронизирует все функции, отвечающие за жизнеобеспечение здания, его системную автоматизацию диспетчеризацию.

    Устанавливать подобные системы непросто, поэтому настройкой центра автоматики должны заниматься только опытные специалисты. Автоматическая вентиляция разделяется на узлы управления:

    • сенсорными датчиками;
    • регуляторами;
    • исполнительной механикой.

    Первая группа приборов занимается сбором информации об окружающей среде — температуре, давлении, уровне влажности и т. п. , а также о состоянии вентиляционных агрегатов. Собранные датчиками данные поступают в центр управления для анализа.

    Информация собирается прессостатами, термостатами и гигростатами. Эти элементы контроля устанавливаются в узловых точках системы и при достижении заданных программой рабочих параметров приборов или окружающей среды соединяют или разъединяют контакты, запуская или останавливая механизмы. Таким образом, поддерживается оптимальный режим температуры и влажности воздуха внутри канала или помещения.

    Параметры контролируются датчиками, фиксирующими влажность, температуру, давление и уровень углекислого газа.

    Вторая группа приборов обрабатывает полученные сведения. Сравнивая показания сенсоров между собой и с заложенными в программе управления нормами, они корректируют работу системы отключением или подключением соответствующих функций, что обеспечивают исполнительные механизмы.

    Корректировка рабочих функций происходит с помощью регуляторов оборотов и частотных преобразователей. Регуляторы оборотов устанавливаются для обслуживания вентиляторов и могут контролировать как один, так и целую их группу. При установке этого узла контроля нужно помнить, что сила тока, проходящая через корректирующий агрегат, не должна в сумме быть больше допустимой для него. Поэтому, выбирая регулятор, нужно обязательно учитывать, на какую максимальную силу тока он спроектирован.

    С помощью частотных преобразователей проводятся безопасные запуски двигателей, мощность которых при этом не ограничена. Но самая важная функция преобразователей — регулировка скорости вращения двигателя с помощью изменяющихся частот напряжения питания. Это обеспечивает плавную регулировку скоростного режима, не влияя на механические характеристики. Процесс такой регулировки вызывает минимальную потерю мощности.

    Такие преимущества частотных преобразователей, несмотря на их высокую стоимость, делают их всё более популярными.

    Приводная часть исполнительной механики состоит из сервоприводов, смесительных узлов и других устройств, делящихся на электрические, пневматические и гидравлические группы.

    Автоматическая система контроля обеспечивает экономию до 20% энергоресурсов благодаря эффективной координации работы всех агрегатов приточной вентиляции. Ей доступны функции:

    • контроля частоты вращения вентиляторов и её регулировка;
    • отслеживания уровня нагрева воды и предупреждение замерзания;
    • контроля над состоянием воздуха и параметрами микроклимата;
    • отслеживания уровня загрязнения фильтров;
    • перевода в состояние неактивного режима отдельных элементов системы;
    • предотвращения короткого замыкания, а также иных неполадок.

    Автоматическое регулирование вентиляции уменьшает влияние человеческого фактора, сводит к минимуму возможность ошибок. Автоматика не нуждается в отдыхе, работает беспрерывно круглые сутки, останавливать её нужно лишь для профилактического контроля и устранения неполадок.

    При проектировании автоматической вентиляции обязательно учитывается её работа при пожаре.

    Если в здании установлена пожарная сигнализация, при возникновении пожара электроприёмники вентиляционных систем должны автоматически прекращать подавать энергию и закрывать противопожарные клапаны на щите управления. Это не допускает к огню кислород и предотвращает его распространение воздуховодами.

    Автоматика должна включать противодымную вентиляцию, а также приспособления для газо- и дымоудаления.

    Автоматика для вентиляционных систем облегчает решение многих задач по управлению вентилированием. Необходимый уровень влажности, оптимальный температурный режим, экономия электричества, повышенный уровень безопасности — всё это обеспечивает автоматическое управление.

    Автоматизация общеобменной вентиляции

    Вентиляция: Обмен воздуха в помещениях для удаления избытков теплоты, влаги, вредных и других веществ с целью обеспечения допустимого микроклимата и качества воздуха в обслуживаемой или рабочей зоне при средней необеспеченности 400 ч/год – при круглосуточной работе и 300 ч/год – при односменной работе в дневное время (СП 60.13330.2012.)

    Вентиляция бывает приточной и вытяжной.

    Приточная – это вентиляция, при которой осуществляется подача очищенного свежего воздуха заданной температуры и влажности приточными установками и центральными кондиционерами.

    Вытяжная – это вентиляция, при которой осуществляется удаление воздух из помещения с помощью вытяжных вентиляторов.

    Приток и вытяжка должны быть равны по объему (исключением является противодымная вентиляция – когда на путях эвакуации создается подпор приточного воздуха). Внутри объекта приточный и вытяжной воздух распределяются по неравномерно. Например, в комнате приготовления пищи, в сан узлах, в комнатах сбора мусора баланс должен быть отрицательный (вытяжка больше притока), в чистых помещениях, например, кабинетах, переговорных, в чистых комнатах (микроэлектроника, фармацевтика) – напротив, положительный (приток больше вытяжки). Тогда запахи и пыль не будут распространяться по всем площадям и будут локализованы.

    Кратность воздухообмена —определяется числом обменов воздуха в помещении за единицу времени. Она равняется отношению объема воздуха, который подается в помещение в единицу времени, к объему помещения. Кратность воздухообмена может быть переменной величиной, она зависит от количества людей в помещении, температуры, влажности и т.п. Управление кратностью должно осуществляться в автоматическом режиме.

    Кроме обеспечения комфортных условий в помещениях, автоматизации вентиляционных систем:

    • Осуществляет контроль и управление работой агрегатов вентиляции, это до минимума сокращает необходимость вмешательства пользователя;
    • Обеспечивает поиск и индикацию неисправностей оборудования;
    • Измеряет параметры электрической цепи оборудования, режимов его работы, и в случае их отклонения защищает его от возможных коротких замыканий, перегрузок, перегревов и замерзания. В качестве примера приведено фото разорванного калача калорифера вентиляционной системы, автоматика не обеспечила циркуляцию теплоносителя в ночной период времени;

  • Осуществляет контроль состояние воздушных фильтров, информирует службу эксплуатации о предстоящем техобслуживании;
  • Управляет температурой воздуха, влажностью, уровнем загазованности в отдельных помещениях объекта и в целом;
  • Обеспечивает работы по расписанию: недельный, суточный или циклический режим работы таймером без вмешательства человека;
  • Позволяет управлять основными возможностями системы вентиляции с единого пульта или удаленно.

Процесс работы не автоматизированной системы вентиляции выглядит следующим образом: в помещение стало душно, оператор поднимает производительность системы вентиляции, в помещении стало холодно, оператор снижает производительность вентиляционной системы. Данный пример не имеет ничего общего с работой современных систем вентиляции, но иллюстрирует основную задачу системы автоматизации, которая должна выполняться – создание комфорта для посетителей здания или обеспечение заданных условий для производства.

Общий алгоритм работы системы. Основные параметры воздуха внутри помещения и на улице постоянно контролируются, измеряется температура воздуха, влажность, наличие в воздухе посторонних газов и примесей, концентрация СО2 и т.д. Данные поступают на микропроцессорный контроллер и анализируются. При выходе значений за определенный интервал (эти значения задаются при настройке системы, они называются «уставка»), контроллер передает управляющий сигнал на запуск исполнительных механизмов, вентиляторов, охладителей, нагревателей, осушителей, срабатывают клапана и заслонки, управляющих сечением воздуховодов и пр. При возвращении значений параметров в заданный диапазон, контроллер отправляет корректирующие сигналы.

Необходимость технического обслуживания определяется по косвенным параметрам, по падению давления или снижению скорости воздушных потоков в воздуховодах, энергопотреблению электрооборудования, сравнению параметров системы со средними для данного режима работы. Информация, выводимая оператору, сообщает о необходимости замены масла в компрессоре, замене фильтров, чистке воздуховодов и т.д.

Автоматика систем вентиляции состоит из следующих элементов:

  • Датчики и преобразователи;
  • Регуляторы;
  • Исполнительные механизмы;
  • Щиты автоматизации (контроллеры, управляющие контакты).

Датчики и преобразователи

Датчики – это элементы систем автоматизации вентиляции, служащие для получения информации о реальном состоянии регулируемого объекта. С их помощью осуществляется обратная связь системы регулирования с объектом по следующим параметрам: температуре, давлению, влажности и т.д.

Для того, чтобы информация с датчика передавалась системе в виде цифрового кода каждый датчик снабжается преобразователем.

Оптимальные места установки датчиков указываются в прилагаемых к ним инструкциях.

Датчики температуры могут быть для внутреннего и наружного применения; накладными на трубопровод (для контроля температуры поверхности трубопровода) или канальными (для измерения температуры воздуха в воздуховоде). Внутри помещений датчики температуры устанавливаются в нейтральных, относительно источников тепла или холода местах, снаружи здания в местах где датчик будет защищен от ветра или прямого попадания солнечных лучей.

Датчики влажности представляют собой блок с электронным прибором, измеряющим относительную влажность, и преобразующий данные в электронный сигнал. Бывают наружного и внутреннего исполнения. Устанавливаются в местах со стабильными условиями влажности, не допускается установка их вблизи радиаторов отопления, блоков кондиционеров, у источников влаги.

Датчики давления подразделяются на реле давления (механическое измерение перепада давлений и электрическое преобразование) и аналоговые датчики давления (преобразование давления сразу в электрический сигнал, например, с помощью пьезо-элементов). И те, и другие применяются для измерения давление как в одной точке, так и разность давлений в двух точках.

И внешние и внутренние датчики желательно устанавливать по два и более, например, с северной и с южной стороны здания. В современных системах, все внешние климатические датчики объединяют в единую метеостанцию.

Датчики потока измеряют скорость движения жидкости или газа в трубопроводе или воздуховоде. Расход жидкости вычисляется по формуле внутри процессорного блока исходя из разности давлений и других параметров (температуры, сечения трубопровода, плотности).

Исполнительные устройства

Исполнительные устройства следует рассматривать в привязке к управлению приводом.

Это важный элемент в таком процессе как управление вентиляцией, на долю которого выпадает роль осуществления приводной части автоматизации. Эти механизмы могут быть как электрическими, так и гидравлическими.

В качестве исполнительных устройств могут выступать клапаны, заслонки и частотные регуляторы.

Регуляторы

Регуляторы – это один из основных элементов системы автоматики для вентиляции, обеспечивающий управление исполнительными механизмами по показаниям различных датчиков.

По функциональному предназначению эти элементы вентиляционных систем подразделяются на регуляторы скорости и регуляторы температур.

Регуляторы скорости бывают однофазными и трёхфазными (также, как и двигатели). Также они бывают с плавным или ступенчатым регулированием, при этом выбор способа регулирования зависит от мощностей вентиляторов. Наиболее современным и экономичным является способ скорости вращения насосов и вентиляторов с помощью преобразователей частоты (ПЧ). Несмотря на высокую стоимость, ПЧ экономически оправдывают себя уже на двигателях с мощностью более 1 кВт.

Регуляторы температур в зависимости от способа управления бывают пороговыми, управляющие температурой с помощью полностью открытой или полностью закрытой заслонки (пример – автомобильный термостат), и с пропорционально дифференциальным управлением (PID), позволяют плавно управлять температурой в рабочем диапазоне.

Управление регуляторами в системах автоматизации вентиляции осуществляется из щитов управления.

Щиты автоматизации

Работа автоматизированной системы, ее удобство, надежность и безопасность эксплуатации напрямую зависят от алгоритмов управления процессом (специалистов, выполнивших проектирование и наладку), а также от возможностей комплектующих изделий. Алгоритмы реализуются на программном уровне и «зашиваются» в свободно программируемые контроллеры, установленные в щитах автоматизации.

При подключении датчиков к щиту автоматизации учитывают тип сигнала, передаваемого преобразователем (аналоговый, дискретный или пороговый). Аналогично выбираются и модули расширения, управляющие приводами устройств.

Щиты вентсистем бывают силовые, управляющие или совмещенные, если система небольшая. Щиты автоматики для вентиляции обеспечивают:

  • Включение и выключение системы вентиляции;
  • Индикацию состояния оборудования;
  • Защиту от неправильного подключения питающего напряжения и короткого замыкания;
  • Управление производительностью вентиляционной установки;
  • Индикацию состояния воздушных фильтров;
  • Защиту от перегрева электродвигателей;
  • Защиту калорифера от замерзания;
  • Поддержку и контроль температуры воздуха на входе вентиляционной установки и в помещении;
  • Возможность применения временных ручных алгоритмов управления.

Проектирование системы автоматизации вентиляции и кондиционирования

Система автоматизации вентиляции и кондиционирования является одним из наиболее сложных проектов инженерных систем здания.

Это связано с большим количеством точек контроля и исполнительных устройств в системе и учетом нескольких режимов работы системы, включая зимний и летний. Предусматривают:

  • Автоматическое управление производительностью установок систем вентиляции;
  • Сблокированную работу двигателей приточно-вытяжных вентиляторов и заслонок на воздухозаборе;
  • Автоматическую регулировку температуры подающего воздуха;
  • Автоматическое отключение систем при аварийных ситуациях;
  • Защиту калориферов от замораживания;
  • Разные режимы пуска в зависимости от сезона;
  • Контроль параметров внешней и внутренней среды, и параметров техпроцесса- температур, перепадов давления, влажности и т.п.

Проект разрабатывается по заданию технологов – специалистов, разработчиков проекта вентиляции и кондиционирования. В стандартный комплект чертежей включают:

  • Общие данные;
  • Структурные схемы, при необходимости;
  • Задание на программирование системы;
  • Функциональные схемы автоматизации для каждой из подсистем – по ним будут собираться щиты автоматизации;
  • Схемы связи контроллеров системы автоматизации;
  • Схемы внешних соединений для щитов автоматизации (фактически это таблица соединений);
  • Схемы связи со смежными системами автоматизации;
  • Принципиальные электрические схемы щитов автоматизации, двигателей насосов или вентиляторов;
  • Принципиальные схемы питания щитов автоматизации;
  • План расположения оборудования и проводок систем автоматизации;
  • Кабельные журналы;
  • Монтажные схемы;
  • Спецификация оборудования и проводок.

Режимы работы системы. Работа в системе автоматизации и диспетчеризации здания

Щит автоматизации системы вентиляции должен обеспечивать работу в следующих режимах:

Ручном. В этом случае управление системой осуществляется вручную.

Автоматическом автономном, с передачей данных в систему диспетчеризации. В этом случае включение и выключение происходит автономно, без учета показаний смежных инженерных систем, при этом уведомления о работе системы передаются диспетчеру.

Автоматический в составе автоматизированной системы управления зданием. При таком режиме работа вентиляции синхронизирована с другими системами жизнеобеспечения здания. Все системы здания, управляемые по разработанным алгоритмам, формируют систему автоматизации и диспетчеризации здания.

Управление системой осуществляется по протоколам управления здания. Наиболее известные это LonWorks, ModBus, BACnet.

Управление вентиляцией при пожаре

При проектировании систем автоматики вентиляции, учитывают их работу в случае пожара.

Согласно СП 60.13330.2012, для зданий и помещений, оборудованных автоматическими установками пожаротушения или автоматической пожарной сигнализацией, следует предусматривать автоматическое действия электроприемников систем вентиляции:

  • Отключение при пожаре в помещении или в системе вентиляции, которое может производиться централизованно, прекращая подачу электропитания и обеспечивая закрытие противопожарных клапанов на распределительные щиты систем вентиляции, или индивидуально для каждой системы с целью предотвращения распространения огня по воздуховодам и остановки притока кислорода к пламени;
  • Включения систем противодымной вентиляции на путях эвакуации и в зонах безопасности, или противодымной вентиляции в помещении, где произошел пожар, в зависимости от проектных решений;
  • Включения систем для удаления газа и дыма после пожара.

Системы управления электроэнергией. Контроль и автоматизированное управление работой системы. Подробнее »

В ближайшем будущем, появится возможность увеличения КПД солнечных панелей до 50%. Эффективность. Подробнее »

Руководство Филиала КОО «ЛОГРАР ЛИМИТЕД» выражает благодарность коллективу ООО. Подробнее »

КОО «ЛОГРАР ЛИМИТЕД» 1 сентября 2015

Уважаемый Ринат Шакирзянович! ООО «ФИНПРОЕКТ» выражает благодарность компании ООО. Подробнее »

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: